Non-coding RNAs as therapeutic targets and biomarkers in ischaemic heart disease

Berry, C. et al. Small-vessel disease in the heart and brain: current knowledge, unmet therapeutic need, and future directions. J. Am. Heart Assoc. 8, e011104 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Mihatov, N., Januzzi, J. L. Jr & Gaggin, H. K. Type 2 myocardial infarction due to supply-demand mismatch. Trends Cardiovasc. Med. 27, 408–417 (2017).

Article  PubMed  Google Scholar 

Thygesen, K. et al. Fourth universal definition of myocardial infarction (2018). J. Am. Coll. Cardiol. 72, 2231–2264 (2018).

Article  PubMed  Google Scholar 

Thygesen, K. et al. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 40, 237–269 (2019).

Article  PubMed  Google Scholar 

Thygesen, K. et al. Fourth universal definition of myocardial infarction (2018). Circulation 138, e618–e651 (2018).

Article  PubMed  Google Scholar 

Nowbar, A. N., Gitto, M., Howard, J. P., Francis, D. P. & Al-Lamee, R. Mortality from ischemic heart disease. Circ. Cardiovasc. Qual. Outcomes 12, e005375 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Taubel, J. et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J. 42, 178–188 (2021).

Article  CAS  PubMed  Google Scholar 

Vedin, O. et al. Significance of ischemic heart disease in patients with heart failure and preserved, midrange, and reduced ejection fraction: a nationwide cohort study. Circ. Heart Fail. 10, e003875 (2017).

Article  PubMed  Google Scholar 

Shah, S. J. et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur. Heart J. 39, 3439–3450 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

John, J. E. et al. Coronary artery disease and heart failure with preserved ejection fraction: the ARIC study. J. Am. Heart Assoc. 11, e021660 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elgendy, I. Y. & Pepine, C. J. Heart failure with preserved ejection fraction: is ischemia due to coronary microvascular dysfunction a mechanistic factor? Am. J. Med. 132, 692–697 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Elgendy, I. Y., Mahtta, D. & Pepine, C. J. Medical therapy for heart failure caused by ischemic heart disease. Circ. Res. 124, 1520–1535 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marwick, T. H. Ejection fraction pros and cons: JACC state-of-the-art review. J. Am. Coll. Cardiol. 72, 2360–2379 (2018).

Article  MathSciNet  PubMed  Google Scholar 

Chapman, A. R. et al. Long-term outcomes in patients with type 2 myocardial infarction and myocardial injury. Circulation 137, 1236–1245 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Berry, C. Stable coronary syndromes: the case for consolidating the nomenclature of stable ischemic heart disease. Circulation 136, 437–439 (2017).

Article  PubMed  Google Scholar 

Reynolds, H. R. et al. Coronary arterial function and disease in women with no obstructive coronary arteries. Circ. Res. 130, 529–551 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herscovici, R. et al. Ischemia and no obstructive coronary artery disease (INOCA): what is the risk? J. Am. Heart Assoc. 7, e008868 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Christiansen, M. N. et al. Age-specific trends in incidence, mortality, and comorbidities of heart failure in Denmark, 1995 to 2012. Circulation 135, 1214–1223 (2017).

Article  PubMed  Google Scholar 

Srivaratharajah, K. et al. Reduced myocardial flow in heart failure patients with preserved ejection fraction. Circ. Heart Fail. 9, e002562 (2016).

Article  PubMed  Google Scholar 

Tsao, C. W. et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation 145, e153–e639 (2022).

Article  PubMed  Google Scholar 

Foreman, K. J. et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016 — 40 for 195 countries and territories. Lancet 392, 2052–2090 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Andersson, C. & Vasan, R. S. Epidemiology of heart failure with preserved ejection fraction. Heart Fail. Clin. 10, 377–388 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Ashokprabhu, N. D., Quesada, O., Alvarez, Y. R. & Henry, T. D. INOCA/ANOCA: mechanisms and novel treatments. Am. Heart J. 30, 100302 (2023).

Google Scholar 

Schirone, L. et al. An overview of the molecular mechanisms associated with myocardial ischemic injury: state of the art and translational perspectives. Cells 11, 1165 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das, S. et al. Noncoding RNAs in cardiovascular disease: current knowledge, tools and technologies for investigation, and future directions: a scientific statement from the American Heart Association. Circ. Genom. Precis. Med. 13, e000062 (2020).

Article  PubMed  Google Scholar 

Santovito, D. & Weber, C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat. Rev. Cardiol. 19, 620–638 (2022).

Article  CAS  PubMed  Google Scholar 

Frantz, S., Hundertmark, M. J., Schulz-Menger, J., Bengel, F. M. & Bauersachs, J. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies. Eur. Heart J. 43, 2549–2561 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan, Y. et al. The cardiac translational landscape reveals that micropeptides are new players involved in cardiomyocyte hypertrophy. Mol. Ther. 29, 2253–2267 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spencer, H. L. et al. The LINC00961 transcript and its encoded micropeptide, small regulatory polypeptide of amino acid response, regulate endothelial cell function. Cardiovasc. Res. 116, 1981–1994 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jonas, S. & Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16, 421–433 (2015).

Article  CAS  PubMed  Google Scholar 

Zhong, N., Nong, X., Diao, J. & Yang, G. piRNA-6426 increases DNMT3B-mediated SOAT1 methylation and improves heart failure. Aging 14, 2678–2694 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, X. Q. et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N6-methyladenosine methylation of Parp10 mRNA. Nat. Cell Biol. 22, 1319–1331 (2020).

Article  CAS  PubMed  Google Scholar 

Rajan, K. S. et al. Abundant and altered expression of PIWI-interacting RNAs during cardiac hypertrophy. Heart Lung Circ. 25, 1013–1020 (2016).

Article  PubMed  Google Scholar 

Sun, Y. H., Lee, B. & Li, X. Z. The birth of piRNAs: how mammalian piRNAs are produced, originated, and evolved. Mamm. Genome 33, 293–311 (2022).

Article  CAS  PubMed  Google Scholar 

Kufel, J. & Grzechnik, P. Small nucleolar RNAs tell a different tale. Trends Genet. 35, 104–117 (2019).

Article  CAS  PubMed  Google Scholar 

van Ingen, E. et al. C/D box snoRNA SNORD113-6 guides 2′-O-methylation and protects against site-specific fragmentation of tRNALeu(TAA) in vascular remodeling. Mol. Ther. Nucleic Acids 30, 162–172 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Brameier, M., Herwig, A., Reinhardt, R., Walter, L. & Gruber, J. Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res. 39, 675–686 (2011).

Article  CAS  PubMed  Google Scholar 

Jagielski, N. P., Rai, A. K., Rajan, K. S., Mangal, V. & Garikipati, V. N. S. A contemporary review of snoRNAs in cardiovascular health: RNA modification and beyond. Mol. Ther. Nucleic Acids 35, 102087 (2024).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif