CD3ζ ITAMs enable ligand discrimination and antagonism by inhibiting TCR signaling in response to low-affinity peptides

François, P., Voisinne, G., Siggia, E. D., Altan-Bonnet, G. & Vergassola, M. Phenotypic model for early T-cell activation displaying sensitivity, specificity, and antagonism. Proc. Natl Acad. Sci. USA 110, E888–E897 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Lever, M. et al. Architecture of a minimal signaling pathway explains the T-cell response to a 1 million-fold variation in antigen affinity and dose. Proc. Natl Acad. Sci. USA 113, E6630–E6638 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altan-Bonnet, G. & Germain, R. N. Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLoS Biol. 3, e356 (2005).

Article  PubMed  PubMed Central  Google Scholar 

Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).

Article  CAS  PubMed  Google Scholar 

Samelson, L. E. & Klausner, R. D. Tyrosine kinases and tyrosine-based activation motifs. Current research on activation via the T cell antigen receptor. J. Biol. Chem. 267, 24913–24916 (1992).

Article  CAS  PubMed  Google Scholar 

Gaud, G., Lesourne, R. & Love, P. E. Regulatory mechanisms in T cell receptor signalling. Nat. Rev. 18, 485–497 (2018).

CAS  Google Scholar 

Humphrey, M. B., Lanier, L. L. & Nakamura, M. C. Role of ITAM-containing adapter proteins and their receptors in the immune system and bone. Immunol. Rev. 208, 50–65 (2005).

Article  CAS  PubMed  Google Scholar 

Pitcher, L. A. & van Oers, N. S. C. T-cell receptor signal transmission: who gives an ITAM? Trends Immunol. 24, 554–560 (2003).

Article  CAS  PubMed  Google Scholar 

Love, P. E. & Hayes, S. M. ITAM-mediated signaling by the T-cell antigen receptor. Cold Spring Harb. Perspect. Biol. 2, a002485 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Chan, A. C., Irving, B. A. & Weiss, A. New insights into T-cell antigen receptor structure and signal transduction. Curr. Opin. Immunol. 4, 246–251 (1992).

Article  CAS  PubMed  Google Scholar 

James, J. R. Tuning ITAM multiplicity on T cell receptors can control potency and selectivity to ligand density.Sci. Signal. 11, eaan1088 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Mukhopadhyay, H., Cordoba, S.-P., Maini, P. K., van der Merwe, P. A. & Dushek, O. Systems model of T cell receptor proximal signaling reveals emergent ultrasensitivity. PLoS Comput. Biol. 9, e1003004 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Oers, N. S., Love, P. E., Shores, E. W. & Weiss, A. Regulation of TCR signal transduction in murine thymocytes by multiple TCR zeta-chain signaling motifs. J. Immunol. 160, 163–170 (1998).

Article  CAS  PubMed  Google Scholar 

Hwang, S. et al. Reduced TCR signaling potential impairs negative selection but does not result in autoimmune disease. J. Exp. Med. 209, 1781–1795 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hwang, S. et al. TCR ITAM multiplicity is required for the generation of follicular helper T-cells. Nat. Commun. 6, 6982 (2015).

Article  CAS  PubMed  Google Scholar 

Guy, C. S. et al. Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nat. Immunol. 14, 262–270 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kersh, E. N., Kersh, G. J. & Allen, P. M. Partially phosphorylated T cell receptor ζ molecules can inhibit T cell activation. J. Exp. Med. 190, 1627–1636 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sloan-Lancaster, J., Shaw, A. S., Rothbard, J. B. & Allen, P. M. Partial T cell signaling: altered phospho-ζ and lack of zap70 recruitment in APL-induced T cell anergy. Cell 79, 913–922 (1994).

Article  CAS  PubMed  Google Scholar 

Madrenas, J. et al. ζ phosphorylation without ZAP-70 activation induced by TCR antagonists or partial agonists. Science 267, 515–518 (1995).

Article  CAS  PubMed  Google Scholar 

Kersh, E. N., Shaw, A. S. & Allen, P. M. Fidelity of T cell activation through multistep T cell receptor ζ phosphorylation. Science 281, 572–575 (1998).

Article  CAS  PubMed  Google Scholar 

Reis e Sousa, C., Levine, E. H. & Germain, R. N. Partial signaling by CD8+ T cells in response to antagonist ligands. J. Exp. Med. 184, 149–157 (1996).

Article  CAS  PubMed  Google Scholar 

Pitcher, L. A., Ohashi, P. S. & van Oers, N. S. C. T cell antagonism is functionally uncoupled from the 21- and 23-kDa tyrosine-phosphorylated TCR ζ subunits. J. Immunol. 171, 845–852 (2003).

Article  CAS  PubMed  Google Scholar 

Ardouin, L. et al. Crippling of CD3-ζ ITAMs does not impair T cell receptor signaling. Immunity 10, 409–420 (1999).

Article  CAS  PubMed  Google Scholar 

Liu, H. & Vignali, D. A. Differential CD3 ζ phosphorylation is not required for the induction of T cell antagonism by altered peptide ligands. J. Immunol. 163, 599–602 (1999).

Article  CAS  PubMed  Google Scholar 

Dittel, B. N., Stefanova, I., Germain, R. N. & Janeway, C. A. Jr. Cross-antagonism of a T cell clone expressing two distinct T cell receptors. Immunity 11, 289–298 (1999).

Article  CAS  PubMed  Google Scholar 

Stotz, S. H., Bolliger, L., Carbone, F. R. & Palmer, E. T cell receptor (TCR) antagonism without a negative signal: evidence from T cell hybridomas expressing two independent TCRs. J. Exp. Med. 189, 253–264 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daniels, M. A., Schober, S. L., Hogquist, K. A. & Jameson, S. C. Cutting edge: a test of the dominant negative signal model for TCR antagonism. J. Immunol. 162, 3761–3764 (1999).

Article  CAS  PubMed  Google Scholar 

Chandran, S. S. & Klebanoff, C. A. T cell receptor-based cancer immunotherapy: emerging efficacy and pathways of resistance. Immunol. Rev. 290, 127–147 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

Article  CAS  PubMed  Google Scholar 

Lo Presti, V., Buitenwerf, F., van Til, N. P. & Nierkens, S. Gene augmentation and editing to improve TCR engineered T cell therapy against solid tumors.Vaccines 8, 733 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Kochenderfer, J. N., Yu, Z., Frasheri, D., Restifo, N. P. & Rosenberg, S. A. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood 116, 3875–3886 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feucht, J. et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat. Med. 25, 82–88 (2019).

Article  CAS  PubMed  Google Scholar 

Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

Article  CAS  PubMed  Google Scholar 

Zhang, D. J. et al. Selective expression of the Cre recombinase in late-stage thymocytes using the distal promoter of the Lck gene. J. Immunol. 174, 6725–6731 (2005).

Article  CAS  PubMed  Google Scholar 

Klinger, M. et al. Thymic OX40 expression discriminates cells undergoing strong responses to selection ligands. J. Immunol. 182, 4581–4589 (2009).

Article  CAS  PubMed  Google Scholar 

Pitcher, L. A. et al. The CD3 γϵ/δϵ signaling module provides normal T cell functions in the absence of the TCR ζ immunoreceptor tyrosine-based activation motifs. Eur. J. Immunol. 35, 3643–3654 (2005).

Article  CAS  PubMed  Google Scholar 

Daniels, M. A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).

留言 (0)

沒有登入
gif