Automated computation of radiographic parameters of distal radial metaphyseal fractures in forearm X-rays

Crowe S, Massenburg B, Massenburg C, Morrison B, Morrison D (2020) Global trends of hand and wrist trauma: a systematic analysis of fracture and digit amputation using the Global Burden of Disease 2017 Study. Inj Prev 26(2):i115–i124

Article  PubMed  Google Scholar 

Rundgren J, Bojan A, Mellstrand Navarro C, Enocson A (2020) Epidemiology, classification, treatment and mortality of distal radius fractures in adults: an observational study of 23,394 fractures from the National Swedish fracture register. BMC Musculoskelet Disord 21(1):1–9

Article  Google Scholar 

Kamal RN, Shapiro LM (2020) American Academy of Orthopaedic Surgeons. American Society for Surgery of the Hand Clinical Practice Guideline summary management of distal radius fractures. J Am Acad Orthopaedic Surg 30(4):e480ee486.

Solgaard S (1988) Function after distal radius fracture. Acta Orthop Scand 59(1):39–42

Article  CAS  PubMed  Google Scholar 

Brogren E, Hofer M, Petranek M, Wagner P, Dahlin LB, Atroshi I (2011) Relationship between distal radius fracture malunion and arm-related disability: a prospective population-based cohort study with 1-year follow-up. BMC Musculoskelet Disord 12(1):1–9

Article  Google Scholar 

Wilcke MK, Abbaszadegan H, Adolphson PY (2007) Patient-perceived outcome after displaced distal radius fractures: a comparison between radiological parameters, objective physical variables and the DASH score. J Hand Therapy 20(4):290–299

Article  Google Scholar 

Kreder HJ, Hanel DP, McKee M, Jupiter J, McGillivary G, Swiontkowski MF (1996) X-ray film measurements for healed distal radius fractures. J Hand Surgery 21(1):31–39

Article  CAS  Google Scholar 

Best practice for management of Distal Radial Fractures (DRFs). British Orthopaedic Association and British Society for Surgery of the Hand, 2018. https://www.bssh.ac.uk/professionals/management_of_distal_radial_fractures.aspx

Management of Distal Radius Fractures evidence-based clinical practice guideline. American Academy of Orthopedic Surgeons, 5 December 2020.

Johnson P, Szabo RM (1993) Angle measurements of the distal radius: a cadaver study. Skeletal Radiol 22(4):243–246

Article  CAS  PubMed  Google Scholar 

Watson NJ, Asadollahi S, Parrish F, Ridgway J, Tran P, Keating JL (2016) Reliability of radiographic measurements for acute distal radius fractures. BMC Med Imag 16(1):1–9

Article  Google Scholar 

Hossain M, Andrew J (2008) Reliability of a digital radiographic system in measuring distal radial fracture displacement parameters. Euro J Orthop Surg Traumatol 18(8):565–569

Article  Google Scholar 

Raisuddin AM, Vaattovaara E, Nevalainen M, Nikki M, Järvenpää E, Makkonen K, Pinola P, Palsio T, Niemensivu A, Tervonen O, Tiulpin A (2021) Critical evaluation of deep neural networks for wrist fracture detection. Sci Rep 11(1):6006. https://doi.org/10.1038/s41598-021-85570-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davidson A, Suna A, Joskowicz L, Weil Y (2022) Computer generated radiographic measurements of distal radius fractures—does it help with decision making? J Hand Surg Am. https://doi.org/10.1016/j.jhsa.2022.09.015

Article  PubMed  Google Scholar 

Payer C, Štern D, Bischof H, Urschler M (2019) Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med Image Anal 54:207–219

Article  PubMed  Google Scholar 

Rouzrokh P, Wyles CC, Kurian SJ, Ramazanian T, Cai JC, Huang Q, Erickson BJ (2022) Deep learning for radiographic measurement of femoral component subsidence following total hip arthroplasty. Radiol Artif Intell 4(3):e210206.

Zheng Q, Shellikeri S, Huang H, Hwang M, Sze RW (2020) Deep learning measurement of leg length discrepancy in children based on radiographs. Radiology 296(1):152–158

Article  PubMed  Google Scholar 

Yan K, Tang Y, Peng Y, Sandfort V, Bagheri M, Lu Z, Summers RM (2019) MULAN: multitask universal lesion analysis network for joint lesion detection, tagging, and segmentation. In: Proceedings of 21st international conference on medical image computing and computer-assisted intervention, pp. 194–202.

Bano S, Dromey B, Vasconcelos F, Napolitano R, David AL, Peebles DM, Stoyanov D (2021) AutoFB: Automating fetal biometry estimation from standard ultrasound planes. In: Proceedings of 23rd international conference on medical image computing and computer-assisted intervention, pp. 228–238.

Avisdris N, Yehuda B, Ben-Zvi O, Link-Sourani D, Ben-Sira L, Miller E, Joskowicz L (2021) Automatic linear measurements of the fetal brain on MRI with deep neural networks. Int J Comput Assist Radiol Surg 16(9):1481–1492.

Kang BK, Han Y, Oh J, Lim J, Ryu J, Yoon MS, Ryu S (2022) Automatic segmentation for favourable delineation of ten wrist bones on wrist radiographs using Convolutional Neural Network. J Personalized Med 12(5):776

Article  Google Scholar 

Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, Potter H (2018) Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci 115(45):11591–11596

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thian YL, Li Y, Jagmohan P, Sia D, Chan, VEY, Tan RT (2019) Convolutional neural networks for automated fracture detection and localization on wrist radiographs. Radiol Artif Intell 1(1).

Blüthgen C, Becker AS, de Martini IV, Meier A, Martini K, Frauenfelder T (2020) Detection and localization of distal radius fractures: deep learning system versus radiologists. Euro J Radiol 126:108925

Article  Google Scholar 

Suzuki T, Maki S, Yamazaki T, Wakita H, Toguchi Y, Horii M, Ohtori S (2022) Detecting distal radial fractures from wrist radiographs using a deep convolutional neural network with an accuracy comparable to hand orthopedic surgeons. J Digital Imaging 35(1):39–46

Article  Google Scholar 

Khan MA, Sharif M, Akram T, Bukhari SAC, Nayak RS (2020) Developed Newton-Raphson based deep features selection framework for skin lesion recognition. Pattern Recogn Lett 129:293–303

Article  Google Scholar 

Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of IEEE international conference on computer vision, pp. 2980–2988.

MURA dataset: bone X-Ray deep learning competition, Stanford Machine Learning Group, https://stanfordmlgroup.github.io/competitions/mura/, last visited Nov 14, 2022.

Yushkevich PA, Gao Y, Gerig G (2016) ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-modality biomedical images. In: Proceedings of 38th International IEEE Conference on Engineering, Medicine and Biology. IEEE, New York, pp 3342–3345.

Howard J, Gugger S (2020) Fastai: a layered API for deep learning. Information 11(2):108

Article  Google Scholar 

Vingelmann P. Fitzek FHP. NVIDIA CUDA Release 10.2.89, 2020.

Reyes-Aldasoro CC, Ngan KH, Ananda A, d'Avila Garcez A, Appelboam A, Knapp KM (2020) Geometric semi-automatic analysis of radiographs of Colles' fractures PLoS ONE 15(9):e0238926. https://doi.org/10.1371/journal.pone.0238926.

留言 (0)

沒有登入
gif