Screening of small molecule compounds targeting hnRNPA2 protein

Dreyfuss G, Matunis MJ, Piñol-Roma S, Burd CG. hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem. 1993;62:289–321. https://doi.org/10.1146/annurev.bi.62.070193.001445

Article  CAS  PubMed  Google Scholar 

Dreyfuss G, Kim VN, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol. 2002;3:195–205. https://doi.org/10.1038/nrm760

Article  CAS  PubMed  Google Scholar 

He Y, Brown MA, Rothnagel JA, Saunders NA, Smith R. Roles of heterogeneous nuclear ribonucleoproteins A and B in cell proliferation. J Cell Sci. 2005;118:3173–3183. https://doi.org/10.1242/jcs.02448

Article  CAS  PubMed  Google Scholar 

Sun Q, Mayeda A, Hampson RK, Krainer AR, Rottman FM. General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev. 1993;7:2598–2608. https://doi.org/10.1101/gad.7.12b.2598

Article  CAS  PubMed  Google Scholar 

Liu Y, Shi SL. The roles of hnRNP A2/B1 in RNA biology and disease. Wiley Interdiscip Rev RNA. 2021;12:e1612. https://doi.org/10.1002/wrna.1612

Article  CAS  PubMed  Google Scholar 

Liu Y, Li H, Liu F, Gao LB, Han R, Chen C, et al. Heterogeneous nuclear ribonucleoprotein A2/B1 is a negative regulator of human breast cancer metastasis by maintaining the balance of multiple genes and pathways. EBioMedicine. 2020;51:102583. https://doi.org/10.1016/j.ebiom.2019.11.044

Article  PubMed  PubMed Central  Google Scholar 

Mizuno H, Honda M, Shirasaki T, Yamashita T, Yamashita T, Mizukoshi E, et al. Heterogeneous nuclear ribonucleoprotein A2/B1 in association with hTERT is a potential biomarker for hepatocellular carcinoma. Liver Int. 2012;32:1146–1155. https://doi.org/10.1111/j.1478-3231.2012.02778.x

Article  CAS  PubMed  Google Scholar 

Peng WZ, Zhao J, Liu X, Li CF, Si S, Ma R. hnRNPA2B1 regulates the alternative splicing of BIRC5 to promote gastric cancer progression. Cancer Cell Int. 2021;21:281. https://doi.org/10.1186/s12935-021-01968-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xuan Y, Wang J, Ban L, Lu JJ, Yi C, Li Z, et al. hnRNPA2/B1 activates cyclooxygenase-2 and promotes tumor growth in human lung cancers. Mol Oncol. 2016;10:610–624. https://doi.org/10.1016/j.molonc.2015.11.010

Article  CAS  PubMed  Google Scholar 

Berson A, Barbash S, Shaltiel G, Goll Y, Hanin G, Greenberg DS, et al. Cholinergic-associated loss of hnRNP-A/B in Alzheimer’s disease impairs cortical splicing and cognitive function in mice. EMBO Mol Med. 2012;4:730–742. https://doi.org/10.1002/emmm.201100995

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kolisnyk B, Al-Onaizi MA, Hirata PH, Guzman MS, Nikolova S, Barbash S, et al. Forebrain deletion of the vesicular acetylcholine transporter results in deficits in executive function, metabolic, and RNA splicing abnormalities in the prefrontal cortex. J Neurosci. 2013;33:14908–14920. https://doi.org/10.1523/jneurosci.1933-13.2013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beleoken E, Leh H, Arnoux A, Ducot B, Nogues C, De Martin E, et al. SPRi-based strategy to identify specific biomarkers in systemic lupus erythematosus, rheumatoid arthritis and autoimmune hepatitis. PLoS ONE. 2013;8:e84600. https://doi.org/10.1371/journal.pone.0084600

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arango D, Morohashi K, Yilmaz A, Kuramochi K, Parihar A, Brahimaj B, et al. Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets. Proc Natl Acad Sci USA. 2013;110:E2153–E2162. https://doi.org/10.1073/pnas.1303726110

Article  PubMed  PubMed Central  Google Scholar 

Soung NK, Kim HM, Asami Y, Kim DH, Cho Y, Naik R, et al. Mechanism of the natural product moracin-O derived MO-460 and its targeting protein hnRNPA2B1 on HIF-1α inhibition. Exp Mol Med. 2019;51:1–14. https://doi.org/10.1038/s12276-018-0200-4

Article  CAS  PubMed  Google Scholar 

Sudhakaran M, Parra MR, Stoub H, Gallo KA, Doseff AI. Apigenin by targeting hnRNPA2 sensitizes triple-negative breast cancer spheroids to doxorubicin-induced apoptosis and regulates expression of ABCC4 and ABCG2 drug efflux transporters. Biochem Pharmacol. 2020;182:114259. https://doi.org/10.1016/j.bcp.2020.114259

Article  CAS  PubMed  PubMed Central  Google Scholar 

He T, Jin M, Xu C, Ma Z, Wu F, Zhang X. The homeostasis-maintaining metabolites from bacterial stress response to bacteriophage infection suppress tumor metastasis. Oncogene. 2018;37:5766–5779. https://doi.org/10.1038/s41388-018-0376-z

Article  CAS  PubMed  Google Scholar 

Wu B, Su S, Patil DP, Liu H, Gan J, Jaffrey SR, et al. Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat Commun. 2018;9:420. https://doi.org/10.1038/s41467-017-02770-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ward WH, Holdgate GA. Isothermal titration calorimetry in drug discovery. Prog Med Chem. 2001;38:309–376. https://doi.org/10.1016/s0079-6468(08)70097-3

Article  CAS  PubMed  Google Scholar 

Johnson CM. Isothermal titration calorimetry. Methods Mol Biol. 2021;2263:135–159. https://doi.org/10.1007/978-1-0716-1197-5_5

Article  CAS  PubMed  Google Scholar 

Lin K, Wu G. Isothermal titration calorimetry assays to measure binding affinities In Vitro. Methods Mol Biol. 2019;1893:257–272. https://doi.org/10.1007/978-1-4939-8910-2_19

Article  CAS  PubMed  Google Scholar 

Yammine A, Gao J, Kwan AH. Tryptophan fluorescence quenching assays for measuring protein-ligand binding affinities: principles and a practical guide. Bio Protoc. 2019;9:e3253. https://doi.org/10.21769/BioProtoc.3253

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brenk R, Vetter SW, Boyce SE, Goodin DB, Shoichet BK. Probing molecular docking in a charged model binding site. J Mol Biol. 2006;357:1449–1470. https://doi.org/10.1016/j.jmb.2006.01.034

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan H, Hu Q, Wang J, Liu Z, Wu D, Lu W, et al. Myricetin is a novel inhibitor of human inosine 5’-monophosphate dehydrogenase with anti-leukemia activity. Biochem Biophys Res Commun. 2016;477:915–922. https://doi.org/10.1016/j.bbrc.2016.06.158

Article  CAS  PubMed  Google Scholar 

Latorraca NR, Wang JK, Bauer B, Townshend RJL, Hollingsworth SA, Olivieri JE, et al. Molecular mechanism of GPCR-mediated arrestin activation. Nature. 2018;557:452–456. https://doi.org/10.1038/s41586-018-0077-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–461. https://doi.org/10.1002/jcc.21334

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheung CHY, Hsu CL, Tsuei CY, Kuo TT, Huang CT, Hsu WM, et al. Combinatorial targeting of MTHFD2 and PAICS in purine synthesis as a novel therapeutic strategy. Cell Death Dis. 2019;10:786. https://doi.org/10.1038/s41419-019-2033-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundbäck T, Nordlund P, et al. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc. 2014;9:2100–2122. https://doi.org/10.1038/nprot.2014.138

Article  CAS  PubMed  Google Scholar 

Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013;341:84–87. https://doi.org/10.1126/science.1233606

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif