Discovery of potent maternal embryonic leucine zipper kinase (MELK) inhibitors of novel chemotypes using structure-based pharmacophores

Tang Q, Li W, Zheng X, Ren L, Liu J, Li S, et al. MELK is an oncogenic kinase essential for metastasis, mitotic progression, and programmed death in lung carcinoma. Signal Transduct Target Ther. 2020;5:279.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das A, Prajapati A, Karna A, Sharma HK, Uppal S, Lather V, et al. Structure-based virtual screening of chemical libraries as potential MELK inhibitors and their therapeutic evaluation against breast cancer. Chem Biol Interact. 2023;376:110443.

Article  CAS  PubMed  Google Scholar 

Ren L, Guo J-S, Li Y-H, Dong G, Li X-Y. Structural classification of MELK inhibitors and prospects for the treatment of tumor resistance: a review. Biomed Pharmacother. 2022;156:113965.

Article  CAS  PubMed  Google Scholar 

Ganguly R, Mohyeldin A, Thiel J, Kornblum HI, Beullens M, Nakano I. MELK—a conserved kinase: functions, signaling, cancer, and controversy. Clin Transl Med. 2015;4:1–8.

Article  Google Scholar 

Jiang P, Zhang D. Maternal embryonic leucine zipper kinase (MELK): a novel regulator in cell cycle control, embryonic development, and cancer. Int J Mol Sci. 2013;14:21551–60.

Article  PubMed  PubMed Central  Google Scholar 

Yang H, Zhou H, Wang G, Tian L, Li H, Zhang Y, et al. MELK is a prognostic biomarker and correlated with immune infiltration in glioma. Front Neurol. 2022;13:977180–95.

Article  PubMed  PubMed Central  Google Scholar 

Sun H, Ma H, Zhang H, Ji M. Up-regulation of MELK by E2F1 promotes the proliferation in cervical cancer cells. Int J Biol Sci. 2021;17:3875.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li G, Yang M, Zuo L, Wang MX. MELK as a potential target to control cell proliferation in triple‑negative breast cancer MDA‑MB‑231 cells. Oncol Lett. 2018;15:9934–40.

PubMed  PubMed Central  Google Scholar 

Talib WH, Alsayed AR, Barakat M, Abu-Taha MI, Mahmod AI. Targeting drug chemo-resistance in cancer using natural products. Biomedicines 2021;9:1353.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Zhou X, Li Y, Xu Y, Lu K, Li P, et al. Inhibition of maternal embryonic leucine zipper kinase with OTSSP167 displays potent anti-leukemic effects in chronic lymphocytic leukemia. Oncogene. 2018;37:5520–33.

Article  CAS  PubMed  Google Scholar 

Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig P-A, et al. The target landscape of clinical kinase drugs. Science. 2017;358:eaan4368.

Article  PubMed  PubMed Central  Google Scholar 

Ji W, Arnst C, Tipton AR, Bekier ME, Taylor WR, Yen TJ, et al. OTSSP167 abrogates mitotic checkpoint through inhibiting multiple mitotic kinases. PLoS One. 2016;15:e0153518.

Article  Google Scholar 

Chung S, Suzuki H, Miyamoto T, Takamatsu N, Tatsuguchi A, Ueda K, et al. Development of an orally-administrative MELK-targeting inhibitor that suppresses the growth of various types of human cancer. Oncotarget. 2012;3:1629.

Article  PubMed  PubMed Central  Google Scholar 

Kapale SS, Mali SN, Chaudhari HK. Molecular modelling studies for 4-oxo-1, 4-dihydroquinoline-3-carboxamide derivatives as anticancer agents. Med Drug Discov. 2019;2:100008.

Article  Google Scholar 

Siju E, Rajalakshmi G, Paulose AP, Dhanya F, Hariraj N, Rahul K CADD: pharmacological approaches in drug design and drug discovery. World J Pharm Pharm Sci. 2017;892–908.

Gao Q, Yang L, Zhu Y. Pharmacophore-based drug design approach as a practical process in drug discovery. Curr Comput Aided Drug Des. 2010;6:37–49.

Article  CAS  PubMed  Google Scholar 

Abuhammad A, Taha M. Innovative computer-aided methods for the discovery of new kinase ligands. Future Med Chem. 2016;8:509–26.

Article  CAS  PubMed  Google Scholar 

Aparoy P, Kumar Reddy K, Reddanna P. Structure and ligand-based drug design strategies in the development of novel 5-LOX inhibitors. Curr Med Chem. 2012;19:3763–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Sha’er MA, Mansi I, Khanfar M, Abudayyh A. Discovery of new heat shock protein 90 inhibitors using virtual co-crystallized pharmacophore generation. J Enzym Inhib Med Chem. 2016;31:64–77.

Article  Google Scholar 

Böhm H-J, Flohr A, Stahl M. Scaffold hopping. Drug Discov Today Technol. 2004;1:217–24.

Article  PubMed  Google Scholar 

Hu Y, Stumpfe D, Bajorath J, Jr.Recent advances in scaffold hopping.J Med Chem. 2017;60:1238–46.

Article  CAS  PubMed  Google Scholar 

Yang S-Y. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today Technol. 2010;15:444–50.

Article  CAS  Google Scholar 

Hessler G, Baringhaus K-H. The scaffold hopping potential of pharmacophores. Drug Discov Today Technol. 2010;7:e263–e269.

Article  CAS  Google Scholar 

Zhou S, Li GB, Luo L, Zhong L, Chen K, Li H, et al. Structure-based discovery of new maternal embryonic leucine zipper kinase inhibitors. Org Biomol Chem. 2018;16:1489–95.

Article  CAS  PubMed  Google Scholar 

Carvalho AL, Trincão J, Romão MJ. X-ray crystallography in drug discovery. Methods Mol Biol. 2009;572:31–56.

Article  PubMed  Google Scholar 

Zheng H, Hou J, Zimmerman MD, Wlodawer A, Minor W. The future of crystallography in drug discovery. Expert Opin Drug Discov. 2014;9:125–37.

Article  CAS  PubMed  Google Scholar 

Triballeau N, Acher F, Brabet I, Pin J-P, Bertrand H-O. Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem. 2005;48:2534–47.

Article  CAS  PubMed  Google Scholar 

Daoud S, Taha M. Ligand-based modeling of CXC chemokine receptor 4 and identification of inhibitors of novel chemotypes as potential leads towards new anti-COVID-19 treatments. Med Chem. 2022;18:871–83.

Article  CAS  PubMed  Google Scholar 

Irwin JJ, Shoichet BK. ZINC− a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005;45:177–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kirchmair J, Distinto S, Markt P, Schuster D, Spitzer GM, Liedl KR, et al. How to optimize shape-based virtual screening: choosing the right query and including chemical information. J Chem Inf Model 2009;49:678–92.

Article  CAS  PubMed  Google Scholar 

Kirchmair J, Markt P, Distinto S, Wolber G, Langer T. Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection—what can we learn from earlier mistakes? J Comput Aided Mol Des. 2008;22:213–28.

Article  CAS  PubMed  Google Scholar 

Al-Tawil MF, Daoud S, Ma’mon MH, Taha MO. Discovery of new Cdc2-like kinase 4 (CLK4) inhibitors via pharmacophore exploration combined with flexible docking-based ligand/receptor contact fingerprints and machine learning. RSC Adv. 2022;12:10686–700.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shoichet BK. Interpreting steep dose-response curves in early inhibitor discovery. J Med Chem. 2006;49:7274–7.

Article  CAS  PubMed  Google Scholar 

Mousa LA, Hatmal MMM, Taha M. Exploiting activity cliffs for building pharmacophore models and comparison with other pharmacophore generation methods: sphingosine kinase 1 as case study. J Comput Aided Mol Des. 2022;36:39–62.

Article  CAS  PubMed  Google Scholar 

Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. 2020;367:eaay5947.

Article  PubMed  Google Scholar 

Kelder J, Grootenhuis PD, Bayada DM, Delbressine LP, Ploemen JP. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res. 1999;16:1514–9.

Article  CAS  PubMed  Google Scholar 

Berman H, Henrick K, Nakamura H. Announcing the worldwide protein data bank. Nat Struct Mol Biol. 2003;10:980.

Article  CAS  Google Scholar 

Wolber G, Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model. 2005;45:160–9.

Article  CAS  PubMed  Google Scholar 

Mansi IA, Al-Sha’er MA, Mhaidat NM, Taha MO, Shahin R. Investigation of binding characteristics of Phosphoinositide-dependent kinase-1 (PDK1) co-crystallized ligands through virtual pharmacophore modeling leading to novel anti-PDK1 hits. Med Chem. 2020;16:860–80.

Article  CAS 

留言 (0)

沒有登入
gif