Design, synthesis and antimicrobial activities of 1,2,3-triazole hybrids with amine-ester functionality

Dheer D, Singh V, Shankar R. Medicinal attributes of 1,2,3-triazoles: current developments. Bioorg Chem. 2017;71:30–54. https://doi.org/10.1016/j.bioorg.2017.01.010.

Article  CAS  PubMed  Google Scholar 

Bozorov K, Zhao J, Aisa HA. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: a recent overview. Bioorg Med Chem. 2019;27:3511–31. https://doi.org/10.1016/j.bmc.2019.07.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lal K, Kumar L, Kumar A, Kumar A. Oxazolone–1,2,3-triazole hybrids: design, synthesis and antimicrobial evaluation. Curr Top Med Chem. 2018;18:1506–13. https://doi.org/10.2174/1568026618666180913110456.

Article  CAS  PubMed  Google Scholar 

Singh H, Sindhu J, Khurana JM, Sharma C, Aneja KR. Ultrasound promoted one pot synthesis of novel fluorescent triazolyl spirocyclic oxindoles using DBU based task specific ionic liquids and their antimicrobial activity. Eur J Med Chem. 2014;77:145–54. https://doi.org/10.1016/j.ejmech.2014.03.016.

Article  CAS  PubMed  Google Scholar 

Kumar L, Lal K, Kumar A, Paul AK, Kumar A. Pyrazoline tethered 1,2,3-triazoles: synthesis, antimicrobial evaluation and in silico studies. J Mol Struc. 2021;1246:31154–65. https://doi.org/10.1016/j.molstruc.2021.131154.

Article  CAS  Google Scholar 

Sindhu J, Singh H, Khurana JM, Bhardwaj JK, Saraf P, Sharma C. Synthesis and biological evaluation of some functionalized 1H-1, 2, 3-triazole tethered pyrazolo [3,4-b] pyridin-6(7H)-ones as antimicrobial and apoptosis inducing agents. Med Chem Res. 2016;25:1813–30. https://doi.org/10.1007/s00044-016-1604-0.

Article  CAS  Google Scholar 

Kumar L, Lal K, Kumar A, Kumar A. Synthesis, antimicrobial evaluation and docking studies of oxazolone-1,2,3-triazole-amide hybrids. Res Chem Intermed. 2021;47:5079–97. https://doi.org/10.1007/s11164-021-04588-3.

Article  CAS  Google Scholar 

Jiang X, Wu G, Zalloum WA, Meuser ME, Dick A, Sun L, et al. Discovery of novel 1,4-disubstituted 1,2,3-triazole phenylalanine derivatives as HIV-1 capsid inhibitors. RSC Adv. 2019;9:28961–86. https://doi.org/10.1039/C9RA05869A.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giffin MJ, Heaslet H, Brik A, Lin YC, Cauvi G, Wong CH, et al. A copper (I)-catalyzed 1,2,3-triazole azide−alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J Med Chem. 2008;51:6263–70. https://doi.org/10.1021/jm800149m.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng CY, Haque A, Hsieh MF, Hassan SI, Faizi MSH, Dege N, et al. 1,4-Disubstituted 1H-1,2,3-triazoles for renal diseases: studies of viability, anti-inflammatory, and antioxidant activities. Int J Mol Sci. 2020;21:3823. https://doi.org/10.3390/ijms21113823.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh H, Sindhu J, Khurana JM, Sharma C, Aneja KR. A facile eco-friendly one-pot five-component synthesis of novel 1,2,3-triazole-linked pentasubstituted 1,4-dihydropyridines and their biological and photophysical studies. Aust J Chem. 2013;66:1088–96. https://doi.org/10.1071/CH13217.

Article  CAS  Google Scholar 

Chinthala Y, Thakur S, Tirunagari S, Chinde S, Domatti AK, Arigari NK, et al. Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity. Eur J Med Chem. 2015;93:564–73. https://doi.org/10.1016/j.ejmech.2015.02.027.

Article  CAS  PubMed  Google Scholar 

Kumar L, Lal K, Yadav P, Kumar A, Paul AK. Synthesis, characterization, α-glucosidase inhibition and molecular modeling studies of some pyrazoline-1H-1,2,3-triazole hybrids. J Mol Struc. 2020;1216:128253. https://doi.org/10.1016/j.molstruc.2020.128253.

Article  CAS  Google Scholar 

Shareghi-Boroujeni D, Iraji A, Mojtabavi S, Faramarzi MA, Akbarzadeh T, Saeedi M. Synthesis, in vitro evaluation, and molecular docking studies of novel hydrazineylideneindolinone linked to phenoxymethyl-1,2,3-triazole derivatives as potential α-glucosidase inhibitors. Bioorg Chem. 2021;111:104869. https://doi.org/10.1016/j.bioorg.2021.104869.

Article  CAS  PubMed  Google Scholar 

Kaushik CP, Sangwan J, Luxmi R, Kumar D, Kumar D, Das A, et al. Design, synthesis, anticancer and antioxidant activities of amide linked 1,4-disubstituted 1,2,3triazoles. JMolStruc. 2021;1226:129255. https://doi.org/10.1016/j.molstruc.2020.129255.

Article  CAS  Google Scholar 

El Malah T, Mageid REA, Awad HM, Nour HF. Copper (I)-catalysed azide–alkyne cycloaddition and antiproliferative activity of mono- and bis-1,2,3-triazole derivatives. New J Chem. 2020;44:18256–63. https://doi.org/10.1039/D0NJ04308G.

Article  CAS  Google Scholar 

Alam MM, Almalki AS, Neamatallah T, Ali NM, Malebari AM, Nazreen S. Synthesis of new 1,3,4-oxadiazole-incorporated 1,2,3-triazole moieties as potential anticancer agents targeting thymidylate synthase and their docking studies. Pharmaceuticals. 2020;13:390. https://doi.org/10.3390/ph13110390.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nipate AS, Jadhav CK, Chate AV, Deshmukh TR, Sarkate AP, Gill CH. Synthesis and in vitro anticancer activities of new 1,4‐disubstituted‐1,2,3‐triazoles derivatives through click approach. ChemistrySelect. 2021;6:5173–79. https://doi.org/10.1002/slct.202101035.

Article  CAS  Google Scholar 

Shinde V, Mahulikar P, Mhaske PC, Nawale L, Sarkar D. Synthesis and biological evaluation of new 2-aryl-4-((4-aryl-1H-1,2,3-triazol-1-yl) methyl) thiazole derivatives. Res Chem Intermed. 2018;44:1247–60. https://doi.org/10.1007/s11164-017-3164-4.

Article  CAS  Google Scholar 

Jagadale SM, Abhale YK, Pawar HR, Shinde A, Bobade VD, Chavan AP, et al. Synthesis of new thiazole and pyrazole clubbed 1,2,3-triazol derivatives as potential antimycobacterial and antibacterial agents. Polycycl Aroma Compd. 2020;1:1–22. https://doi.org/10.1080/10406638.2020.1857272.

Article  CAS  Google Scholar 

Garg A, Borah D, Trivedi P, Gogoi D, Chaliha AK, Ali AA, et al. A simple work-up-free, solvent-free approach to novel amino acid linked 1,4-disubstituted 1,2,3-triazoles as potent antituberculosis agents. ACS Omega. 2020;5:29830–37. https://doi.org/10.1021/acsomega.0c03862.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faidallah HM, Panda SS, Serrano JC, Girgis AS, Khan KA, Alamry KA, et al. Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates. Bioorg Med Chem. 2016;24:3527–39. https://doi.org/10.1016/j.bmc.2016.05.060.

Article  CAS  PubMed  Google Scholar 

Kaushik CP, Chahal M. Synthesis, antimalarial and antioxidant activity of coumarin appended 1,4-disubstituted 1,2,3-triazoles. Monatsh Chem. 2021;152:1001–12. https://doi.org/10.1007/s00706-021-02821-8.

Article  CAS  Google Scholar 

Almeida-Souza F, Silva VDD, Silva GX, Taniwaki NN, Hardoim DDJ, Buarque CD, et al. 1,4-Disubstituted-1,2,3-triazole compounds induce ultrastructural alterations in leishmania amazonensis promastigote: an in vitro antileishmanial and in silico pharmacokinetic study. Int J Mol Sci. 2020;21:6839–58. https://doi.org/10.3390/ijms21186839.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pertino MW, Torre AFDL, Schmeda-Hirschmann G, Vega C, Rolon M, Coronel C, et al. Synthesis, trypanocidal and anti-leishmania activity of new triazole-lapachol and nor-lapachol hybrids. Bioorg Chem. 2020;103:104122–27. https://doi.org/10.1016/j.bioorg.2020.104122.

Article  CAS  PubMed  Google Scholar 

Huisgen R, Szeimies G, Mobius L. 1.3-Dipolar Cycloadditionen,XXXII. Kinetik der Additionen organischer Azide an CCMehrfachbindungen. Chem Ber. 1967;100:2494–07. https://doi.org/10.1002/cber.19671000806.

Article  CAS  Google Scholar 

Tornoe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase:[1,2,3]-triazoles by regiospecific copper (I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem. 2002;67:3057–64. https://doi.org/10.1021/jo011148j.

Article  CAS  PubMed  Google Scholar 

Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective ligation of azide and terminal alkynes. Angew Chem Int Ed.2002;41:2596–99. https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4.

Article  CAS  Google Scholar 

Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed. 2001;40:2004–21. https://doi.org/10.1002/1521-3773.

Article  CAS  Google Scholar 

Su X, Shuai Y, Guo Z, Feng Y. Functionalization of multi-walled carbon nanotubes with thermo-responsive azide-terminated poly (N-isopropylacrylamide) via click reactions. Molecules. 2013;18:4599–12. https://doi.org/10.3390/molecules18044599.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arseneault M, Wafer C, Morin JF. Recent advances in click chemistry applied to dendrimersynthesis. Molecules. 2015;20:9263. https://doi.org/10.3390/molecules20059263.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palomo JM. Click reactions in protein chemistry: from the preparation of semisynthetic enzymes to new click enzymes. Org Biomol Chem. 2012;10:9309–18. https://doi.org/10.1039/C2OB26409A.

Article  CAS  PubMed  Google Scholar 

Perez-Balderas F, Ortega-Munoz M, Morales-Sanfrutos J, Hernandez-Mateo F, Calvo-Flores FG, Calvo-Asín JA, et al. Multivalent neoglycoconjugates by regiospecific cycloaddition of alkynes and azides using organic-soluble copper catalysts. Org Lett. 2003;5:1951–54. https://doi.org/10.1021/ol034534r.

留言 (0)

沒有登入
gif