Nalivaeva NN, Turner AJ, Zhuravin IA. Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration. Front Neurosci. 2018;12:825. https://doi.org/10.3389/fnins.2018.00825.
Article PubMed PubMed Central Google Scholar
Qu H, Khalil RA. Vascular mechanisms and molecular targets in hypertensive pregnancy and preeclampsia. Am J Physiol Heart Circ Physiol. 2020;319(3):H661–81. https://doi.org/10.1152/ajpheart.00202.2020.
Article CAS PubMed PubMed Central Google Scholar
Tarvonen M, Hovi P, Sainio S, Vuorela P, Andersson S, Teramo K. Intrapartal cardiotocographic patterns and hypoxia-related perinatal outcomes in pregnancies complicated by gestational diabetes mellitus. Acta Diabetol. 2021;58(11):1563–73. https://doi.org/10.1007/s00592-021-01756-0.
Article CAS PubMed PubMed Central Google Scholar
Lahti-Pulkkinen M, Girchenko P, Tuovinen S, Sammallahti S, Reynolds RM, Lahti J, et al. Maternal hypertensive pregnancy disorders and mental disorders in children. Hypertension. 2020;75(6):1429–38. https://doi.org/10.1161/HYPERTENSIONAHA.119.14140.
Article CAS PubMed Google Scholar
Dominguez JE, Street L, Louis J. Management of obstructive sleep apnea in pregnancy. Obstet Gynecol Clin North Am. 2018;45(2):233–47. https://doi.org/10.1016/j.ogc.2018.01.001.
Article PubMed PubMed Central Google Scholar
Facco FL, Parker CB, Reddy UM, Silver RM, Koch MA, Louis JM, et al. Association between sleep-disordered breathing and hypertensive disorders of pregnancy and gestational diabetes mellitus. Obstet Gynecol. 2017;129(1):31–41. https://doi.org/10.1097/AOG.0000000000001805.
Article PubMed PubMed Central Google Scholar
Liu L, Su G, Wang S, Zhu B. The prevalence of obstructive sleep apnea and its association with pregnancy-related health outcomes: a systematic review and meta-analysis. Sleep Breath. 2019;23(2):399–412. https://doi.org/10.1007/s11325-018-1714-7.
Pien GW, Pack AI, Jackson N, Maislin G, Macones GA, Schwab RJ. Risk factors for sleep-disordered breathing in pregnancy. Thorax. 2014;69(4):371–7. https://doi.org/10.1136/thoraxjnl-2012-202718.
Wilson EN, Mabry S, Bradshaw JL, Gardner JJ, Rybalchenko N, Engelland R, et al. Gestational hypoxia in late pregnancy differentially programs subcortical brain maturation in male and female rat offspring. Biol Sex Differ. 2022;13(1):54. https://doi.org/10.1186/s13293-022-00463-x.
Article CAS PubMed PubMed Central Google Scholar
Wang B, Zeng H, Liu J, Sun M. Effects of prenatal hypoxia on nervous system development and related diseases. Front Neurosci. 2021;15: 755554. https://doi.org/10.3389/fnins.2021.755554.
Article PubMed PubMed Central Google Scholar
Bin YS, Cistulli PA, Roberts CL, Ford JB. Childhood health and educational outcomes associated with maternal sleep apnea: a population record-linkage study. Sleep. 2017;40:11. https://doi.org/10.1093/sleep/zsx158.
Ream M, Ray AM, Chandra R, Chikaraishi DM. Early fetal hypoxia leads to growth restriction and myocardial thinning. Am J Physiol Regul Integr Comp Physiol. 2008;295(2):R583–95. https://doi.org/10.1152/ajpregu.00771.2007.
Article CAS PubMed PubMed Central Google Scholar
Lu Q, Zhang X, Wang Y, Li J, Xu Y, Song X, et al. Sleep disturbances during pregnancy and adverse maternal and fetal outcomes: a systematic review and meta-analysis. Sleep Med Rev. 2021;58: 101436. https://doi.org/10.1016/j.smrv.2021.101436.
Torche F, Kleinhaus K. Prenatal stress, gestational age and secondary sex ratio: the sex-specific effects of exposure to a natural disaster in early pregnancy. Hum Reprod. 2012;27(2):558–67. https://doi.org/10.1093/humrep/der390.
Global Pregnancy C, Schalekamp-Timmermans S, Arends LR, Alsaker E, Chappell L, Hansson S, et al. Fetal sex-specific differences in gestational age at delivery in pre-eclampsia: a meta-analysis. Int J Epidemiol. 2017;46(2):632–42. https://doi.org/10.1093/ije/dyw178.
Lorente-Pozo S, Parra-Llorca A, Torres B, Torres-Cuevas I, Nunez-Ramiro A, Cernada M, et al. Influence of sex on gestational complications, fetal-to-neonatal transition, and postnatal adaptation. Front Pediatr. 2018;6:63. https://doi.org/10.3389/fped.2018.00063.
Article PubMed PubMed Central Google Scholar
Weiss SJ, Musana JW. Symptoms of maternal psychological distress during pregnancy: sex-specific effects for neonatal morbidity. J Perinat Med. 2022;50(7):878–86. https://doi.org/10.1515/jpm-2021-0340.
Article PubMed PubMed Central Google Scholar
Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61–73. https://doi.org/10.1056/NEJMra0708473.
Article CAS PubMed PubMed Central Google Scholar
Ma RC, Tutino GE, Lillycrop KA, Hanson MA, Tam WH. Maternal diabetes, gestational diabetes and the role of epigenetics in their long term effects on offspring. Prog Biophys Mol Biol. 2015;118(1–2):55–68. https://doi.org/10.1016/j.pbiomolbio.2015.02.010.
Article CAS PubMed Google Scholar
Vanderplow AM, Kermath BA, Bernhardt CR, Gums KT, Seablom EN, Radcliff AB, et al. A feature of maternal sleep apnea during gestation causes autism-relevant neuronal and behavioral phenotypes in offspring. PLoS Biol. 2022;20(2): e3001502. https://doi.org/10.1371/journal.pbio.3001502.
Article CAS PubMed PubMed Central Google Scholar
Wang W, Tang J, Zhong M, Chen J, Li T, Dai Y. HIF-1 alpha may play a role in late pregnancy hypoxia-induced autism-like behaviors in offspring rats. Behav Brain Res. 2021;411: 113373. https://doi.org/10.1016/j.bbr.2021.113373.
Article CAS PubMed Google Scholar
Piesova M, Koprdova M, Ujhazy E, Krskova L, Olexova L, Morova M, et al. Impact of prenatal hypoxia on the development and behavior of the rat offspring. Physiol Res. 2020;69(Suppl 4):S649–59. https://doi.org/10.33549/physiolres.934614.
Article CAS PubMed PubMed Central Google Scholar
Cristancho AG, Gadra EC, Samba IM, Zhao C, Ouyang M, Magnitsky S, et al. Deficits in seizure threshold and other behaviors in adult mice without gross neuroanatomic injury after late gestation transient prenatal hypoxia. Dev Neurosci. 2022;44(4–5):246–65. https://doi.org/10.1159/000524045.
Article CAS PubMed Google Scholar
Fan JM, Wang X, Hao K, Yuan Y, Chen XQ, Du JZ. Upregulation of PVN CRHR1 by gestational intermittent hypoxia selectively triggers a male-specific anxiogenic effect in rat offspring. Horm Behav. 2013;63(1):25–31. https://doi.org/10.1016/j.yhbeh.2012.11.005.
Article CAS PubMed Google Scholar
Viner RM, Allen NB, Patton GC. Puberty, Developmental Processes, and Health Interventions. In: Bundy DAP, Silva ND, Horton S, Jamison DT, Patton GC, editors. Child and Adolescent Health and Development. 3rd ed. Washington (DC)2017. doi:https://doi.org/10.1596/978-1-4648-0423-6_ch9.
Cunningham RL, Lumia AR, McGinnis MY. Androgenic anabolic steroid exposure during adolescence: ramifications for brain development and behavior. Horm Behav. 2013;64(2):350–6. https://doi.org/10.1016/j.yhbeh.2012.12.009.
Article CAS PubMed Google Scholar
Yang Y, Wang JZ. From structure to behavior in basolateral amygdala-hippocampus circuits. Front Neural Circuits. 2017;11:86. https://doi.org/10.3389/fncir.2017.00086.
Article CAS PubMed PubMed Central Google Scholar
Banker SM, Gu X, Schiller D, Foss-Feig JH. Hippocampal contributions to social and cognitive deficits in autism spectrum disorder. Trends Neurosci. 2021;44(10):793–807. https://doi.org/10.1016/j.tins.2021.08.005.
Article CAS PubMed PubMed Central Google Scholar
Cominski TP, Jiao X, Catuzzi JE, Stewart AL, Pang KC. The role of the hippocampus in avoidance learning and anxiety vulnerability. Front Behav Neurosci. 2014;8:273. https://doi.org/10.3389/fnbeh.2014.00273.
Article PubMed PubMed Central Google Scholar
Gandhi T, Lee CC. Neural mechanisms underlying repetitive behaviors in rodent models of autism spectrum disorders. Front Cell Neurosci. 2020;14: 592710. https://doi.org/10.3389/fncel.2020.592710.
Snyder B, Duong P, Trieu J, Cunningham RL. Androgens modulate chronic intermittent hypoxia effects on brain and behavior. Horm Behav. 2018;106:62–73. https://doi.org/10.1016/j.yhbeh.2018.09.005.
Article CAS PubMed PubMed Central Google Scholar
Brockmann MD, Kukovic M, Schonfeld M, Sedlacik J, Hanganu-Opatz IL. Hypoxia-ischemia disrupts directed interactions within neonatal prefrontal-hippocampal networks. PLoS ONE. 2013;8(12): e83074. https://doi.org/10.1371/journal.pone.0083074.
Article CAS PubMed PubMed Central Google Scholar
Prabhakar NR, Peng YJ, Nanduri J. Hypoxia-inducible factors and obstructive sleep apnea. J Clin Invest. 2020;130(10):5042–51. https://doi.org/10.1172/JCI137560.
Comments (0)