Sex and hand differences in haptic processing: implications for mental rotation ability

Clark A, Chalmers D. The extended mind. Analysis. 1998;58:7–19. https://doi.org/10.1093/analys/58.1.7.

Butz MV. Toward a unified sub-symbolic computational theory of cognition. Front Psychol. 2016. https://doi.org/10.3389/fpsyg.2016.00925.

Article  PubMed  PubMed Central  Google Scholar 

Tomlinson SP, Davis NJ, Morgan HM, Bracewell RM. Hemispheric specialisation in haptic processing. Neuropsychologia. 2011;49:2703–10. https://doi.org/10.1016/j.neuropsychologia.2011.05.018.

Article  PubMed  Google Scholar 

Mcglone J. Sex differences in human brain asymmetry: a critical survey. Behav Brain Sci. 1980;3:215–27.

Article  Google Scholar 

Scheuringer A, Harris T-A, Pletzer B. Recruiting the right hemisphere: sex differences in inter-hemispheric communication during semantic verbal fluency. Brain Language. 2020;207:104814. https://doi.org/10.1016/j.bandl.2020.104814.

Article  PubMed  Google Scholar 

Jeannerod M, Decety J. Mental motor imagery: a window into the representational stages of action. Curr Opin Neurobiol. 1995;5:727–32. https://doi.org/10.1016/0959-4388(95)80099-9.

Article  CAS  PubMed  Google Scholar 

Oldrati V, Finisguerra A, Avenanti A, Aglioti SM, Urgesi C. Differential influence of the dorsal premotor and primary somatosensory cortex on corticospinal excitability during kinesthetic and visual motor imagery: A low-frequency repetitive transcranial magnetic stimulation study. Brain Sci. 2021. https://doi.org/10.3390/brainsci11091196.

Article  PubMed  PubMed Central  Google Scholar 

Ganis G, Keenan JP, Kosslyn SM, Pascual-Leone A. Transcranial magnetic stimulation of primary motor cortex affects mental rotation. Cereb Cortex. 2000;10:175–80. https://doi.org/10.1093/cercor/10.2.175.

Article  CAS  PubMed  Google Scholar 

Zacks JM. Neuroimaging studies of mental rotation: a meta-analysis and review. J Cogn Neurosci. 2008;20:1–19. https://doi.org/10.1162/jocn.2008.20013.

Article  PubMed  Google Scholar 

Kolb IQ, et al. Fundamentals of human neuropsychology. 5th ed. New York: Worth Publishers; 2003.

Google Scholar 

Voyer D, Jansen P. Motor expertise and performance in spatial tasks: a meta-analysis. Hum Mov Sci. 2017;54:110–24. https://doi.org/10.1016/j.humov.2017.04.004.

Article  PubMed  Google Scholar 

Wexler M, Kosslyn SM, Berthoz A. Motor processes in mental rotation. Cognition. 1998;68:77–94. https://doi.org/10.1016/S0010-0277(98)00032-8.

Article  CAS  PubMed  Google Scholar 

Moreau D, Mansy-Dannay A, Clerc J, Guerrien A. Spatial ability and motor performance: Assessing mental rotation processes in elite and novice athletes. Int J Sport Psychol. 2011;42:525–54.

Google Scholar 

Schwarzer G, Freitag C, Schum N. How crawling and manual object exploration are related to the mental rotation abilities of 9-month-old infants. Front Psychol. 2013. https://doi.org/10.3389/fpsyg.2013.00097.

Article  PubMed  PubMed Central  Google Scholar 

Flusberg SJ, Boroditsky L. Are things that are hard to physically move also hard to imagine moving? Psychon Bull Rev. 2011;18:158–64. https://doi.org/10.3758/s13423-010-0024-2.

Article  PubMed  Google Scholar 

Suggate HS, Lehmann J, Jansen P. Cognition embodied: mental rotation is faster for objects that imply a greater body–object interaction. J Cogn Psychol. 2019;31:876–90. https://doi.org/10.1080/20445911.2019.1678627.

Article  Google Scholar 

Lederman SJ, Klatzky RL. Haptic perception: a tutorial. Atten Percept Psychophys. 2009;71:1439–59. https://doi.org/10.3758/APP.71.7.1439.

Article  CAS  PubMed  Google Scholar 

Lebaz S, Jouffrais C, Picard D. Haptic identification of raised-line drawings: high visuospatial imagers outperform low visuospatial imagers. Psychol Res. 2012;76:667–75. https://doi.org/10.1007/s00426-011-0351-6.

Article  PubMed  Google Scholar 

Kalisch J-CAK Tobias, Kattenstroth. Cognitive and tactile factors affecting human haptic performance in later life. PLOS ONE 2012;7:1–11. https://doi.org/10.1371/journal.pone.0030420.

Frick A, Möhring W. Mental object rotation and motor development in 8- and 10-month-old infants. J Exp Child Psychol. 2013;115:708–20. https://doi.org/10.1016/j.jecp.2013.04.001.

Article  PubMed  Google Scholar 

Frick A, Wang S. Mental spatial transformations in 14- and 16-month-old infants: Effects of action and observational experience. Child Dev. 2014;85:278–93. https://doi.org/10.1111/cdev.12116.

Article  PubMed  Google Scholar 

Shepard RN, Metzler J. Mental rotation of three-dimensional objects. Science. 1971;171:701–3. https://doi.org/10.1126/science.171.3972.701.

Article  CAS  PubMed  Google Scholar 

Linn MC, Petersen AC. Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Dev. 1985;56:1479–98.

Article  CAS  PubMed  Google Scholar 

Voyer D, Voyer S, Bryden MP. Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychol Bull. 1995;117:250–70. https://doi.org/10.1037/0033-2909.117.2.250.

Article  CAS  PubMed  Google Scholar 

Lippa RA, Collaer ML, Peters M. Sex differences in mental rotation and line angle judgments are positively associated with gender equality and economic development across 53 nations. Arch Sex Behav. 2010;39:990–7. https://doi.org/10.1007/s10508-008-9460-8.

Article  PubMed  Google Scholar 

Levine SC, Foley A, Lourenco S, Ehrlich S, Ratliff K. Sex differences in spatial cognition: advancing the conversation. Wiley Interdiscip Rev Cogn Sci. 2016;7:127–55. https://doi.org/10.1002/wcs.1380.

Article  PubMed  Google Scholar 

Aguilar Ramirez DE, Blinch J, Gonzalez CLR. One brick at a time: Building a developmental profile of spatial abilities. Dev Psychobiol. 2021;63:e22155. https://doi.org/10.1002/dev.22155.

Article  PubMed  Google Scholar 

Aguilar Ramirez DE, Blinch J, Takeda K, Copeland JL, Gonzalez CLR. Differential effects of aging on spatial abilities. Exp Brain Res. 2022;240:1579–88. https://doi.org/10.1007/s00221-022-06363-1.

Article  PubMed  Google Scholar 

Fernandes AM, Albuquerque PB. Tactual perception: a review of experimental variables and procedures. Cogn Process. 2012;13:285–301. https://doi.org/10.1007/s10339-012-0443-2.

Article  PubMed  Google Scholar 

Kappers AML. Large systematic deviations in a bimanual parallelity task: Further analysis of contributing factors. Acta Psychol. 2003;114:131–45. https://doi.org/10.1016/S0001-6918(03)00063-5.

Article  Google Scholar 

Hermens F, Kappers AML, Gielen SCAM. The structure of frontoparallel haptic space is task dependent. Percep Psychophys. 2006;68:62–75. https://doi.org/10.3758/BF03193656.

Article  Google Scholar 

Zuidhoek S, Kappers AML, Postma A. Haptic orientation perception: Sex differences and lateralization of functions. Neuropsychologia. 2007;45:332–41. https://doi.org/10.1016/j.neuropsychologia.2006.05.032.

Article  PubMed  Google Scholar 

Cohen H, Levy JJ. Sex differences in categorization of tactile stimuli. Percept Mot Skills. 1986;63:83–6. https://doi.org/10.2466/pms.1986.63.1.83.

Article  CAS  PubMed  Google Scholar 

Heller MA, Jones ML, Walk AM, Schnarr R, Hasara A, Litwiller B. Sex differences in the haptic change task. J Gen Psychol. 2009;137:49–62. https://doi.org/10.1080/00221300903293063.

Article  Google Scholar 

Berthiaume F, Robert M, St-Onge R, Pelletier J. Absence of a gender difference in a haptic version of the water-level task. Bull Psychon Soc. 1993;31:57–60. https://doi.org/10.3758/BF03334140.

Article 

Comments (0)

No login
gif