Preparation, characterization, pharmacokinetics and ulcerative colitis treatment of hyperoside-loaded mixed micelles

Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, Panaccione R, Ghosh S, Wu JC, Chan FK, Sung JJ, Kaplan GG. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390(10114):2769–2778. Available from https://www.sciencedirect.com/science/article/pii/S0140673617324480. https://doi.org/10.1016/S0140-6736(17)32448-0.

Kaenkumchorn T, Wahbeh G. Ulcerative colitis: making the diagnosis. Gastroenterol Clin North Am. 2020;49(4):655–669. Available from https://www.sciencedirect.com/science/article/pii/S0889855320300698https://doi.org/10.1016/j.gtc.2020.07.001.

Ibaraki H, Hatakeyama N, Arima N, Takeda A, Seta Y, Kanazawa T. Systemic delivery of sirna to the colon using peptide modified peg-pcl polymer micelles for the treatment of ulcerative colitis. Eur J Pharm Biopharm. 2022;170:170–178. Available from https://www.sciencedirect.com/science/article/pii/S0939641121003581https://doi.org/10.1016/j.ejpb.2021.12.009.

Ibaraki H, Hatakeyama N, Arima N, Takeda A, Seta Y, Kanazawa T. Systemic delivery of sirna to the colon using peptide modified peg-pcl polymer micelles for the treatment of ulcerative colitis. Eur J Pharm Biopharm. 2022;170:170–178. https://doi.org/10.1016/j.ejpb.2021.12.009.

Zhang C, Wang X, Xiao M, Ma J, Qu Y, Zou L, Zhang J. Nano-in-micro alginate/chitosan hydrogel via electrospray technology for orally curcumin delivery to effectively alleviate ulcerative colitis. Mater Des. 2022;221:110894. https://doi.org/10.1016/j.matdes.2022.110894.

Miyake Y, Tanaka K, Nagata C, Furukawa S, Andoh A, Yokoyama T, Yoshimura N, Mori K, Ninomiya T, Yamamoto Y, Takeshita E, et al. Dietary intake of vegetables, fruit, and antioxidants and risk of ulcerative colitis: a case-control study in japan. Nutrition. 2021;91–92:111378. Available from https://www.sciencedirect.com/science/article/pii/S0899900721002409https://doi.org/10.1016/j.nut.2021.111378.

Liu F, Zhang XS, Ji Y. Total flavonoid extract from hawthorn (Crataegus pinnatifida) improves inflammatory cytokines-evoked epithelial barrier deficit. Med Sci Monitor. 2020;26. Available from <Go to ISI>://WOS:000514207900001. https://doi.org/10.12659/msm.920170.

Liu J, Wang Q, Omari-Siaw E, Adu-Frimpong M, Liu J, Xu X, Yu J. Enhanced oral bioavailability of bisdemethoxycurcumin-loaded self-microemulsifying drug delivery system: formulation design, in vitro and in vivo evaluation. Int J Pharm. 2020;590:119887. https://doi.org/10.1016/j.ijpharm.2020.119887.

Article  PubMed  CAS  Google Scholar 

Xu S, Chen S, Xia W, Sui H, Fu X. Hyperoside: a review of its structure, synthesis, pharmacology, pharmacokinetics and toxicity. Molecules. 2022;27(9). Available from <Go to ISI>://WOS:000794662700001. https://doi.org/10.3390/molecules27093009.

Xu Y, Liang N, Liu J, Gong X, Yan P, Sun S. Design and fabrication of chitosan-based aie active micelles for bioimaging and intelligent delivery of paclitaxel. Carbohydr Polym. 2022;290:119509. https://doi.org/10.1016/j.carbpol.2022.119509.

Vlaisavljević S, Šibul F, Sinka I, Zupko I, Ocsovszki I, Jovanović-Šanta S. Chemical composition, antioxidant and anticancer activity of licorice from fruska gora locality. Ind Crops Prod. 2018;112:217–224. https://doi.org/10.1016/j.indcrop.2017.11.050.

Wang Q, Wei HC, Zhou SJ, Li Y, Zheng TT, Zhou CZ, Wan XH. Hyperoside: a review on its sources, biological activities, and molecular mechanisms. Phytotherapy Res. 2022. https://doi.org/10.1002/ptr.7478.

Cheng C, Zhang W, Zhang C, Ji PHB, , Wu XH, Sha Z, Chen X, Wang YK, Chen TG, Cheng HB, Shi LY. Hyperoside ameliorates dss-induced colitis through mkrn1-mediated regulation of ppar gamma signaling and th17/treg balance. J Agri Food Chem. 2021;69(50):15240–15251. Available from <Go to ISI>://WOS:000730346400001. https://doi.org/10.1021/acs.jafc.1c06292.

Seo JH, Youn JH, Kim EA, Jun JS, Park JS, Yeom JS, Lim JY, Woo HO, Youn HS, Ko GH, Park JS, Baik SC, Lee WK, Cho MJ, Rhee KH. Helicobacter pylori antigens inducing early immune response in infants. J Korean Med Sci. 2017;32(7):1139–46. https://doi.org/10.3346/jkms.2017.32.7.1139.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pinho E, Grootveld M, Soares G, Henriques M. Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohyd Polym. 2014;101:121–35. https://doi.org/10.1016/j.carbpol.2013.08.078.

Article  CAS  Google Scholar 

Fan H, Li Y, Sun M, Xiao W, Song L, Wang Q, Zhang B, Yu J, Jin X, Ma C, Chai Z. Hyperoside reduces rotenone-induced neuronal injury by suppressing autophagy. Neurochem Res. 2021;10. Available from <Go to ISI>://WOS:000686864800001. https://doi.org/10.1007/s11064-021-03404-z.

Feng Y, Qin G, Chang S, Jing Z, Zhang Y, Wang Y. Antitumor effect of hyperoside loaded in charge reversed and mitochondria-targeted liposomes. Int J Nanomed.. 2021;16:3073–3089. Available from <Go to ISI>://WOS:000644871700001. https://doi.org/10.2147/ijn.s297716.

Shi H, Zhao X, Gao J, Liu Z, Liu Z, Wang K, Jiang J. Acid-resistant ros-responsive hyperbranched polythioether micelles for ulcerative colitis therapy. Chin Chem Lett. 2020;31(12):3102–3106. https://doi.org/10.1016/j.cclet.2020.03.039.

Beloqui A, Coco R, Alhouayek M, Solinís MA, Rodríguez-Gascón A, Muccioli GG, Préat V. Budesonide-loaded nanostructured lipid carriers reduce inflammation in murine dss-induced colitis. International J Pharmaceutics. 2013;454(2):775–783. https://doi.org/10.1016/j.ijpharm.2013.05.017.

Talaei F, Atyabi F, Azhdarzadeh M, Dinarvand R, Saadatzadeh A. Overcoming therapeutic obstacles in inflammatory bowel diseases: a comprehensive review on novel drug delivery strategies. Eur J Pharm Sci. 2013;49(4):712–722. https://doi.org/10.1016/j.ejps.2013.04.031.

Ashjari M, Panahandeh F, Niazi Z, Abolhasani MM. Synthesis of plga–mpeg star-like block copolymer to form micelle loaded magnetite as a nanocarrier for hydrophobic anticancer drug. J Drug Deliv Sci Technol. 20220;56:101563. Available from https://www.sciencedirect.com/science/article/pii/S1773224719318672https://doi.org/10.1016/j.jddst.2020.101563.

Rao Y, Li R, Liu S, Meng L, Wu Q, Yuan Q, Liang H, Qin M. Enhanced bioavailability and biosafety of cannabidiol nanomicelles for effective anti-inflammatory therapy. Particuology. 2022;69:1–9. Available from https://www.sciencedirect.com/science/article/pii/S1674200121002364https://doi.org/10.1016/j.partic.2021.11.010.

Patil S, Ujalambkar V, Rathore A, Rojatkar S, Pokharkar V. Galangin loaded galactosylated pluronic f68 polymeric micelles for liver targeting. Biomed Pharmacother. 2019;112:108691. Available from https://www.sciencedirect.com/science/article/pii/S0753332218353666https://doi.org/10.1016/j.biopha.2019.108691.

Kaur J, Singla P, Kaur I. Labrasol mediated enhanced solubilization of natural hydrophobic drugs in pluronic micelles: physicochemical and in vitro release studies. J Mol Liq. 2022;361:119596. Available from https://www.sciencedirect.com/science/article/pii/S0167732222011345https://doi.org/10.1016/j.molliq.2022.119596.

Zhao L, Du J, Duan Y, Zhang H, Yang C, Cao F, Zhai G. Curcumin loaded mixed micelles composed of pluronic p123 and f68: preparation, optimization and in vitro characterization. Colloids Surf B. 2012;97:101–108. https://doi.org/10.1016/j.colsurfb.2012.04.017.

Sun C, Li W, Ma P, Li Y, Zhu Y, Zhang H, Adu-Frimpong M, Deng W, Yu J, Xu X. Development of tpgs/f127/f68 mixed polymeric micelles: enhanced oral bioavailability and hepatoprotection of syringic acid against carbon tetrachloride-induced hepatotoxicity. Food Chem Toxicol. 2020;137:111126. https://doi.org/10.1016/j.fct.2020.111126.

Sun C, Li W, Ma P, Li Y, Zhu Y, Zhang H, Adu-Frimpong M, Deng W, Yu J, Xu X. Development of tpgs/f127/f68 mixed polymeric micelles: enhanced oral bioavailability and hepatoprotection of syringic acid against carbon tetrachloride-induced hepatotoxicity. Food Chem Toxicol. 2020;137. https://doi.org/10.1016/j.fct.2020.111126.

Fang XB, Zhang JM, Xie X, Liu D, He CW, Wan JB, Chen MW. Ph-sensitive micelles based on acid-labile pluronic f68-curcumin conjugates for improved tumor intracellular drug delivery. Int J Pharm. 2016;502(1–2):28–37. https://doi.org/10.1016/j.ijpharm.2016.01.029.

Article  PubMed  CAS  Google Scholar 

Cai Y, Sun Z, Fang X, Fang X, Xiao F, Wang Y, Chen M. Synthesis, characterization and anti-cancer activity of pluronic f68-curcumin conjugate micelles. Drug Deliv. 2016;23(7):2587–95. https://doi.org/10.3109/10717544.2015.1037970.

Article  PubMed  CAS  Google Scholar 

Liu Y, Xu Y, Wu M, Fan L, He C, Wan JB, Li P, Chen M, Li H. Vitamin e succinate-conjugated f68 micelles for mitoxantrone delivery in enhancing anticancer activity. Int J Nanomed. 2016;11:3167–78. https://doi.org/10.2147/ijn.S103556.

Article  CAS  Google Scholar 

Song Y, Tian Q, Huang Z, Fan D, She Z, Liu X, Cheng X, Yu B, Deng Y. Self-assembled micelles of novel amphiphilic copolymer cholesterol-coupled f68 containing cabazitaxel as a drug delivery system. Int J Nanomed. 2014;9:2307–17. https://doi.org/10.2147/ijn.S61220.

Article  Google Scholar 

Xie YJ, Wang QL, Adu-Frimpong M, Liu J, Zhang KY, Xu XM, Yu JN. Preparation and evaluation of isoliquiritigenin-loaded f127/p123 polymeric micelles. Drug Dev Ind Pharm. 2019;45(8):1224–1232. Available from <Go to ISI>://WOS:000473533100002. https://doi.org/10.1080/03639045.2019.1574812.

Shi F, Chen L, Wang Y, Liu J, Adu-Frimpong M, Ji H, Toreniyazov E, Wang Q, Yu J, Xu X. Enhancement of oral bioavailability and anti-hyperuricemic activity of aloe emodin via novel soluplus®—glycyrrhizic acid mixed micelle system. Drug Deliv Transl Res. 2022;12(3):603–14. https://doi.org/10.1007/s13346-021-00969-8.

Article  PubMed  CAS  Google Scholar 

Shi F, Chen L, Wang Y, Liu J, Adu-Frimpong M, Ji H, Toreniyazov E, Wang Q, Yu J, Xu X. Enhancement of oral bioavailability and anti-hyperuricemic activity of aloe emodin via novel soluplus (r)-glycyrrhizic acid mixed micelle system. Drug Deliv Transl Res. 2022;12(3):603–614. Available from <Go to ISI>://WOS:000640464300002. https://doi.org/10.1007/s13346-021-00969-8.

Xia X, Zhang J, Adu‑Frimpong M, Li X, Shen X, He Q, Rong W, Ji H, Toreniyazov E, Xu X, Yu J. Hyperoside-loaded tpgs/mpeg-pdlla self-assembled polymeric micelles: Preparation, characterization and in vitro/in vivo evaluation. Pharm Dev Technol. 2022;1–13. https://doi.org/10.1080/10837450.2022.2122506.

Guo Y, Gao T, Fang F, Sun S, Yang D, Li Y, Lv S. A novel polymer micelle as a targeted drug delivery system for 10-hydroxycamptothecin with high drug-loading properties and anti-tumor efficacy. Biophys Chem. 2021;279:106679. https://doi.org/10.1016/j.bpc.2021.106679.

Article  PubMed  CAS  Google Scholar 

Rong W, Shen X, Adu-Frimpong M, He Q, Zhang J, Li X, Xia X, Shi F, Cao X, Ji H, Toreniyazov E, et al. Pinocembrin polymeric micellar drug delivery system: preparation, characterisation and anti-hyperuricemic activity evaluation. J Microencapsul. 2022;39(5):419–432. Available from https://doi.org/10.1080/02652048.2022.2096138https://doi.org/10.1080/02652048.2022.2096138.

Wang Q, Wei C, Weng W, Bao R, Adu-Frimpong M, Toreniyazov E, Ji H, Xu XM, Yu J. Enhancement of oral bioavailability and hypoglycemic activity of liquiritin-loaded precursor liposome. Int J Pharm. 2021;592:120036. https://doi.org/10.1016/j.ijpharm.2020.120036.

Wang Y, Chen L, Adu‐Frimpong M, Wei C, Weng W, Wang Q, Xu XM, Yu J. Preparation, in vivo and in vitro evaluation, and pharmacodynamic study of dmy-loaded self-microemulsifying drug delivery system. Eur J Lipid Sci Technol. 2021;123(6):2000369. https://doi.org/10.1002/ejlt.202000369.

Wang Y, Chen L, Adu-Frimpong M, Wei C, Weng W, Wang Q, Xu XM, Yu J. Preparation, in vivo and in vitro evaluation, and pharmacodynamic study of dmy-loaded self-microemulsifying drug delivery system. Eur J Lipid Sci Technol. 2021;123(6):2000369. https://doi.org/10.1002/ejlt.202000369.

Article  CAS  Google Scholar 

Wang Y, Chen L, Adu‐Frimpong M, Wei C, Weng W, Wang Q, Xu XM, Yu J. Preparation, in vivo and in vitro evaluation, and pharmacodynamic study of dmy-loaded self-microemulsifying drug delivery system. Eur J Lipid Sci Technol. 2021;123(6). https://doi.org/10.1002/ejlt.202000369.

Liu J, Zhu Z, Yang Y, Adu-Frimpong M, Chen L, Ji H, Toreniyazov E, Wang Q, Yu J, Xu X. Preparation, characterization, pharmacokinetics, and antirenal injury activity studies of licochalcone a-loaded liposomes. J Food Biochem. 2022;46(1):e14007. https://doi.org/10.1111/jfbc.14007.

Article  PubMed  CAS  Google Scholar 

Li X, Xia X, Zhang J, Adu-Frimpong M, Shen X, Yin W, He Q, Rong W, Shi F, Cao X, Ji H. Preparation, physical characterization, pharmacokinetics and anti-hyperglycemic activity of esculetin-loaded mixed micelles. J Pharma Sci. 2022. Available from https://www.sciencedirect.com/science/article/pii/S0022354922002878. https://doi.org/10.1016/j.xphs.2022.06.022.

Weng W, Wang Q, Wei C, Man N, Zhang K, Wei Q, Adu-Frimpong M, Toreniyazov E, Ji H, Yu J, Xu X. Preparation, characterization, pharmacokinetics and anti-hyperuricemia activity studies of myricitrin-loaded proliposomes. Int J Pharm. 2019;572:118735. https://doi.org/10.1016/j.ijpharm.2019.118735.

Liu J, Wang Q, Adu-Frimpong M, Wei Q, Xie Y, Zhang K, Wei C, Weng W, Ji H, Toreniyazov E. Preparation, in vitro and in vivo evaluation of isoliquiritigenin-loaded tpgs modified proliposomes. Int J Pharm. 2019;563:53–62. https://doi.org/10.1016/j.ijpharm.2019.03.034.

Article  PubMed  CAS  Google Scholar 

Liu J, Wang Q, Adu-Frimpong M, Wei Q, Xie Y, Zhang K, Wei C, Weng W, Ji H, Toreniyazov E, Xu X, Yu J. Preparation, in vitro and in vivo evaluation of isoliquiritigenin-loaded tpgs modified proliposomes. Int J Pharm. 2019;563:53–62. https://doi.org/10.1016/j.ijpharm.2019.03.034.

Article  PubMed  CAS  Google Scholar 

Liu J, Wang Q, Adu-Frimpong M, Wei Q, Xie Y, Zhang K, Wei C, Weng W, Ji H, Toreniyazov E, Xu X. Preparation, in vitro and in vivo evaluation of isoliquiritigenin-loaded tpgs modified proliposomes. Int J Pharm. 2019;563:53–62. Available from <Go to ISI>://WOS:000466146400006. https://doi.org/10.1016/j.ijpharm.2019.03.034.

Liu Y, Sun C, Li W, Adu-Frimpong M, Wang Q, Yu J, Xu X. Preparation and characterization of syringic acid-loaded tpgs liposome with enhanced oral bioavailability and in vivo antioxidant efficiency. Aaps Pharmscitech. 2019;20(3). Available from <Go to ISI>://WOS:000457677200002. https://doi.org/10.1208/s12249-019-1290-6.

Chin KJ, Macachor J, Ong KC, Ong BC. A comparison of 5% dextrose in 0.9% normal saline versus non-dextrose-containing crystalloids as the initial intravenous replacement fluid in elective surgery. Anaesthesia Intensive Care. 2006;34(5):613–617. Available from <Go to ISI>://WOS:000242526700008. https://doi.org/10.1177/0310057x0603400511.

Gutman Y, Krausz M. Regulation of food and water intake in rats as related to plasma osmolarity and volume. Physiol Behav. 1969;4(3):311–313. https://doi.org/10.1016/0031-9384(69)90181-4.

Zhu Y, Peng W, Zhang J, Wang M, Firempong CK, Feng C, Liu H, Xu X, Yu J. Enhanced oral bioavailability of capsaicin in mixed polymeric micelles: preparation, in vitro and in vivo evaluation. J Function Food. 2014;8:358–366. https://doi.org/10.1016/j.jff.2014.04.001.

Zou L, Chen S, Li L, Wu T. The protective effect of hyperoside on carbon tetrachloride-induced chronic liver fibrosis in mice via upregulation of nrf2. Exp Toxicol Pathol. 2017;69(7):451–460. Available from https://www.sciencedirect.com/science/article/pii/S0940299316301348https://doi.org/10.1016/j.etp.2017.04.001.

Xiao B, Si X, Zhang M, Merlin D. Oral administration of ph-sensitive curcumin-loaded microparticles for ulcerative colitis therapy. Colloids Surf B Biointerfaces. 2015;135:379–385. https://doi.org/10.1016/j.colsurfb.2015.07.081.

Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Investigation. 1993;69(2):238–249.

Zhang SF, Hu W, Yan X, Wang D, Yang W, Zhang J, Liu Z. Chondroitin sulfate-curcumin micelle with good stability and reduction sensitivity for anti-cancer drug carrier. Mater Lett. 2021;304:130667. https://doi.org/10.1016/j.matlet.2021.130667.

Zhang X, Yuan J, Zhou N, Shen K, Wang Y, Wang K, Zhu H. Omarigliptin prevents tnf-α-induced cellular senescence in rat aorta vascular smooth muscle cells. Chem Res Toxicol. 2021;34(9):2024–31. https://doi.org/10.1021/acs.chemrestox.1c00076.

Article  PubMed  CAS  Google Scholar 

Le-Vinh B, Le NM, Nazir I, Matuszczak B, Bernkop-Schnürch A. Chitosan based micelle with zeta potential changing property for effective mucosal drug delivery. Int J Biol Macromol. 2019;133:647–655. Available from https://www.sciencedirect.com/science/article/pii/S0141813019317556. https://doi.org/10.1016/j.ijbiomac.2019.04.081.

Thant Y, Wang Q, Wei C, Liu J, Zhang K, Bao R, Zhu Q, Weng W, Yu Q, Zhu Y, Xu X. Tpgs conjugated pro-liposomal nano-drug delivery system potentiate the antioxidant and hepatoprotective activity of myricetin. J Drug Deliv Sci Technol. 2021;66:102808. https://doi.org/10.1016/j.jddst.2021.102808.

Shen B, Wu N, Shen C, Zhang F, Wu Y, Xu P, Zhang L, Wu W, Lu Y, Han J. Hyperoside nanocrystals for hbv treatment: process optimization, in vitro and in vivo evaluation. Drug Dev Ind Pharm. 2016;42(11):1772–81. https://doi.org/10.3109/03639045.2016.1173051.

Article  PubMed  CAS  Google Scholar 

Wang X, Peng F, Liu F, Xiao Y, Li F, Lei H, Wang J, Li M, Xu H. Zein-pectin composite nanoparticles as an efficient hyperoside delivery system: fabrication, characterization, and in vitro release property. LWT. 2020;133:109869. https://doi.org/10.1016/j.lwt.2020.109869.

Kumari V, Tyagi P, Sangal A. In-vitro kinetic release study of illicium verum (chakraphool) polymeric nanoparticles. Mater Today Proc. 2022;60:14–20. https://doi.org/10.1016/j.matpr.2021.11.014.

Article  CAS  Google Scholar 

Zhang G, Huang L, Wu J, Liu Y, Zhang Z, Guan Q. Doxorubicin-loaded folate-mediated ph-responsive micelle based on bletilla striata polysaccharide: release mechanism, cellular uptake mechanism, distribution, pharmacokinetics, and antitumor effects. Int J Biol Macromol. 2020;164:566–77. https://doi.org/10.1016/j.ijbiomac.2020.07.123.

留言 (0)

沒有登入
gif