Yang X, Wang R, Zhang S, et al. Polysaccharides from Panax japonicus C.A. Meyer and their antioxidant activities. Carbohydr Polym. 2014;101:386–91.
Article CAS PubMed Google Scholar
Morita T, Tanaka O, Kohda H. Saponin composition of rhizomes of Panax japonicus collected in South Kyushu, Japan, and its significance in oriental traditional medicine. Chem pharm bull. 1985;33:3852–8.
Zhang S, Wu Y, Jin J, et al. De novo characterization of Panax japonicus C. A. Mey transcriptome and genes related to triterpenoid saponin biosynthesis. Biochem Biophys Res Co. 2015;466(3):450–5.
Wang R, Chen P, Jia F, et al. Characterization and antioxidant activities of polysaccharides from Panax japonicus C.A. Meyer. Carbohydr Polym. 2012;88(4):1402–6.
You XL, Han JY, Choi YE. Plant regeneration via direct somatic embryogenesis in Panax japonicus. Plant Biotechnol Rep. 2007;1(1):5–9.
Ngan F, Shaw P, But P, et al. Molecular authentication of Panax species. Phytochemistry. 1999;50(5):787–91.
Article CAS PubMed Google Scholar
Xia P, Li J, Wang R, et al. Comparative study on volatile oils of four Panax genus species in Southeast Asia by gas chromatography–mass spectrometry. Ind Crops Prod. 2015;74:478–84.
Yoshizaki K, Devkota HP, Yahara S. Four new triterpenoid saponins from the leaves of Panax japonicus grown in southern Miyazaki Prefecture (4). Chem Pharm Bull. 2013;61(3):273–8.
Yoshizaki K, Devkota HP, Fujino H, et al. Saponins composition of rhizomes, taproots, and lateral roots of Satsuma-ninjin (Panax japonicus). Chem Pharm Bull. 2013;61(3):344–50.
Yoshizaki K, Murakami M, Fujino H, et al. New triterpenoid saponins from fruit specimens of Panax japonicus collected in Toyama Prefecture and Hokkaido (2). Chem Pharm Bull. 2012;60(6):728–35.
Ouyang LN, Xiang DW, Wu X, et al. Research progress on chemical constituents and pharmacological activities of Panax japonicus. Chin Tradit Herbal Drugs. 2010;41(6):1023–7.
Zhou M, Xu M, Zhu HT, et al. New dammarane-type saponins from the rhizomes of Panax japonicus. Helv Chim Acta. 2011;94(11):2010–9.
Tanaka K, Kubota M, Zhu S, et al. Analysis of ginsenosides in Ginseng drugs using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. Nat Prod Commun. 2007;2(6):625–32.
Chen J, Tan M, Zou L, et al. Qualitative and quantitative analysis of the saponins in Panacis Japonici Rhizoma using ultra-fast liquid chromatography coupled with triple quadrupole-time of flight tandem mass spectrometry and ultra-fast liquid chromatography coupled with triple quadrupole-linear ion trap tandem mass spectrometry. Chem Pharm Bull. 2019;67(8):839–48.
Wu QS, Chen P, Zhang QW, et al. Advances in research of chemical constituents, pharmacological activities and analytical methods of Panax japonicus. Asia Pac Tradit Med. 2016;12(06):46–54.
Du Z, Li J, Zhang X, et al. An integrated LC-MS-based strategy for the quality assessment and discrimination of three Panax Species. Molecules. 2018;23(11):2988.
Article PubMed PubMed Central Google Scholar
Chen JL, Tan MX, Zou LS, et al. Stimultaneous determination of multiple bioactive constituents in Panacis Japonici Rhizoma processed by different methods and grey relational analysis. Chin J of Chin Mater Med. 2018;43(21):4274–82.
Tanaka O, Morita T, Kasai R, et al. Study on saponins of rhizomes of Panax pseudo-ginseng subsp. himalaicus collected at Tzatogang and Pari-la, Bhutan-Himalaya. Chem Pharm Bull. 1985;33(6):2323–30.
Cai P, Xiao ZY, Wei JX. Chemical constituents of Panax japonicus (I). Chin Tradit Herbal Drugs. 1982;13(3):1–2.
Cai P, Xiao ZY. Chemical constituents of Panax japonicus (II). Chin Tradit Herbal Drugs. 1984;15(6):1–6.
Atopkina LN, Denisenko VA. Synthesis of 20S-protopanaxatriol β-d-glucopyranosides. Chem Nat Compd. 2019;55(1):82–7.
Jia L, Zhao Y. Current evaluation of the millennium phytomedicine–ginseng (I): etymology, pharmacognosy, phytochemistry, market and regulations. Curr Med Chem. 2009;16(19):2475.
Article CAS PubMed PubMed Central Google Scholar
Zou K, Zhu S, Meselhy MR, et al. Dammarane-type saponins from Panax japonicus and their neurite outgrowth activity in SK-N-SH cells. J Nat Prod. 2002;65(9):1288–92.
Article CAS PubMed Google Scholar
Zou K, Zhu S, Tohda C, et al. Dammarane-type triterpene saponins from Panax japonicus. J Nat Prod. 2002;65(3):346–51.
Article CAS PubMed Google Scholar
Huang Z, Huang Y, Li X, et al. Molecular mass and chain conformations of Rhizoma Panacis Japonici polysaccharides. Carbohydr Polym. 2009;78(3):596–601.
Huang Z, Zhang L. Chemical structures of water-soluble polysaccharides from Rhizoma Panacis Japonici. Carbohydr Res. 2009;344(9):1136–40.
Article CAS PubMed Google Scholar
Huang Z, Zhang L, Duan X, et al. Novel highly branched water-soluble heteropolysaccharides as immunopotentiators to inhibit S-180 tumor cell growth in BALB/c mice. Carbohyd Polym. 2012;87(1):427–34.
Meyer C, Zhang L, Zhang X, et al. Comparative analysis of the essential oils from normal and hairy roots of Panax japonicas C.A. Meyer. Afr J Biotechnol. 2011;10:2440–5.
Yang LB, Liu SJ, Da LL, et al. Research of fat-soluble components of Panax japonicus C. A. Mey. J Anhui Agric Sci. 2011;39(20):12145–6.
Chen L, Ren H, Xu R, et al. The effect of Fufang Zhujieshen tablets on inflammatory factors in osteoarthritis. Chin Hosp Pharm J. 2019;39(06):580–5.
Tan QL. The effects of anti -inflammatory of compound Panax japonicus Tablet in rheumatoid arthritis mice. Chin Med Herald. 2011;8(28):27–8.
Wang ZF, Tan QL, Zhang H, et al. Experimental studies on the mechanism of compound Japanese Ginseng pill in treatment of Rheumatoid arthritis. Lishizhen Med Mater Med Res. 2009;20(7):1611–3.
Wen DJ, Chen GD, Zhang CL, et al. Study on the anti-inflammatory effects of total Panax japonicus saponins. Lishizhen Med Mater Med Res. 2008;19(5):1155–6.
Deng L, Yuan D, Zhou Z, et al. Saponins from Panax japonicus attenuate age-related neuroinflammation via regulation of the mitogen-activated protein kinase and nuclear factor kappa B signaling pathways. Neural Regen Res. 2017;12(11):1877–84.
Article CAS PubMed PubMed Central Google Scholar
Cheng ZH, Dun YY, Liu J, et al. Effects of saponins from Panax japonicus on colonic inflammation through Neu3/IAP signaling pathway in aging rats. Lishizhen Med Mater Med Res. 2019;30(7):1597–601.
Wang T, Dai Y, Dun Y, et al. Chikusetsusaponin V inhibits inflammatory responses via NF-κB and MAPK signaling pathways in LPS-induced RAW 264.7 macrophages. Immunopharm Immunot. 2014;36(6):404–11.
Yuan C, Liu C, Wang T, et al. Chikusetsu saponinIVa ameliorates high fat diet-induced inflammation in adipose tissue of mice through inhibition of NLRP3 inflammasome activation and NF-κB signaling. Oncotarget. 2017;8(19):31023.
Article PubMed PubMed Central Google Scholar
Zhao QQ, Wang T, Yuang D, et al. Effect of Panax japonicus polysaccharide on LPS induced microglial inflammatory response. J Chin Med Mater. 2019;42(6):1409–12.
Duan L, Liu CQ, Wu LC, et al. Effects of Panax japonicus hypolipidemic compound on non-alcoholic fatty liver disease in mice and its mechanism. Med J Chin PLA. 2017;42(9):764–8.
Qin YE, Cui QQ, Zhang CC, et al. Effects of total saponins from Panax japonicus on acute hepatic injury induced by carbon tetrachloride. Chin J Inf Tradit Chin Med. 2014;21(10):47–9.
Qin YE, Zhang CC, Wang T, et al. Effect of polysaccharide from Panax japonicus on hepatic cell injury. Chin J Inf Tradit Chin Med. 2014;21(11):59–62.
Yang XL, Chen P. Protective Effects of polysaccharide and total Saponins from Panax japonicus on acute hepatic injury. Chin J Inf Tradit Chin Med. 2011;17(1):65–6.
Yuan D, Xiang T, Huo Y, et al. Preventive effects of total saponins of Panax japonicus on fatty liver fibrosis in mice. Arch Med Sci. 2018;14(2):396–406.
Article CAS PubMed Google Scholar
Dai YW, Zhang CC, Zhao HX, et al. Chikusetsusaponin V attenuates lipopolysaccharide-induced liver injury in mice. Immunopharm Immunot. 2016;38(3):167–74.
Xu R, Liu Z, Fu Q, et al. Protective effects of polysaccharides from Panax japonicus on mice with liver injury induced by acetaminophen. J South-Central Univ Nat (Nat Sci Ed). 2020;39(1):51–5.
Jiang SQ, Duan H, Shu GW, et al. Protective effects of polysaccharides from Panax japonicus on mice with acute liver injury induced by LPS/D-GalN. Chin Med Mat. 2017;40(5):1170–3.
Zhou Q, Duan L, Wu LC, et al. Experimental study of the protective effects of extracts of Panax japonica rhizoma, Salviae Miltiorrhiz radix Et Rhizoma and Crataegi Fructus compound on the hypolipidaemic in nonalcoholic fatty liver of mice. Chin J Clin Pharmacol. 2018;34(13):1532–5.
He ZG, Wang YP, Liu L,
Comments (0)