Cost-effective 3D scanning and printing technologies for outer ear reconstruction: current status

Cooper RA, Ohnabe H, Hobson DA. An introduction to rehabilitation engineering. New York: CRC Press; 2006.

Book  Google Scholar 

Cooper RA, Cooper R. Rehabilitation Engineering: a perspective on the past 40-years and thoughts for the future. Med Eng Phys. 2019;72:3–12.

Article  PubMed  Google Scholar 

Lane JP. Rehabilitation Engineering in the Assistive Technology Industry. In: Mihailidis A, Smith R, editors. Rehabilitation Engineering: Principles and Practice. 2022. p. 28. https://www.taylorfrancis.com/chapters/edit/10.1201/b21964-11/rehabilitation-engineering-assistive-technologyindustry-joseph-lane.

Trevelyan J. Reconstructing engineering from practice. Eng Stud. 2010;2(3):175–95.

Article  Google Scholar 

Fuchs JR, Nasseri BA, Vacanti JP. Tissue engineering: a 21st century solution to surgical reconstruction. Ann Thorac Surg. 2001;72(2):577–91.

Article  CAS  PubMed  Google Scholar 

Guimarães CF, Gasperini L, Marques AP, Reis RL. The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater. 2020;5(5):351–70.

Article  Google Scholar 

Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: A review. RSC Adv. 2019;9(45):26252–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdulhameed O, Al-Ahmari A, Ameen W, Mian SH. Additive manufacturing: Challenges, trends, and applications. Adv Mech Eng. 2019;11(2):1687814018822880.

Article  Google Scholar 

Gibson I, Rosen D, Stucker B, Khorasani M, Rosen D, Stucker B, et al. Additive manufacturing technologies, vol. 17. Cham: Springer; 2021.

Book  Google Scholar 

Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication. 2014;6(2):024103.

Article  CAS  PubMed  Google Scholar 

Touri M, Kabirian F, Saadati M, Ramakrishna S, Mozafari M. Additive manufacturing of biomaterials- the evolution of rapid prototyping. Adv Eng Mater. 2019;21(2):1800511.

Article  Google Scholar 

Sing S, Tey C, Tan J, Huang S, Yeong WY. 3D printing of metals in rapid prototyping of biomaterials: Techniques in additive manufacturing. In: Rapid prototyping of biomaterials. New York: Elsevier; 2020. p. 17–40.

Chua CK, Leong KF, An J. Introduction to rapid prototyping of biomaterials. In: Rapid prototyping of biomaterials. New York: Elsevier; 2020. p. 1–15.

Mikołajewska E, Macko M, Ziarnecki Ł, Stańczak S, Kawalec P, Mikołajewski D. 3D printing technologies in rehabilitation engineering. J Health Sci. 2014;4:78–83.

Google Scholar 

Haleem A, Javaid M, Khan RH, Suman R. 3D printing applications in bone tissue engineering. J Clin Orthop Trauma. 2020;11:S118–24.

Article  PubMed  Google Scholar 

Dawood A, Marti BM, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2015;219(11):521–9.

Article  CAS  PubMed  Google Scholar 

Tian Y, Chen C, Xu X, Wang J, Hou X, Li K, et al. A review of 3D printing in dentistry: Technologies, affecting factors, and applications. Scanning. 2021;2021:19. Article ID 9950131.

Kessler A, Hickel R, Reymus M. 3D printing in dentistry–State of the art. Oper Dent. 2020;45(1):30–40.

Article  CAS  PubMed  Google Scholar 

Schweiger J, Edelhoff D, Güth JF. 3D printing in digital prosthetic dentistry: an overview of recent developments in additive manufacturing. J Clin Med. 2021;10(9):2010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaishya R, Vaish A. 3D printing in orthopedics. General principles of orthopedics and trauma. Springer Cham; 2019. p. 583–590.

Puls N, Carluccio D, Batstone MD, Novak JI. The rise of additive manufacturing for ocular and orbital prostheses: A systematic literature review. Ann 3D Print Med. 2021;4:100036. 3D-Printed Medicine: From today’s accomplishments to tomorrow’s promises. https://doi.org/10.1016/j.stlm.2021.100036.

Diment LE, Thompson MS, Bergmann JH. Clinical efficacy and effectiveness of 3D printing: a systematic review. BMJ Open. 2017;7(12):016891.

Article  Google Scholar 

Vitali J, Cheng M, Wagels M. Utility and cost–effectiveness of 3D-printed materials for clinical use. J 3D Print Med. 2019;3(4):209–18.

Serrano C, Fontenay S, van den Brink H, Pineau J, Prognon P, Martelli N. Evaluation of 3D printing costs in surgery: a systematic review. Int J Technol Assess Health Care. 2020;36(4):349–55.

Article  Google Scholar 

Ballard DH, Mills P, Duszak R Jr, Weisman JA, Rybicki FJ, Woodard PK. Medical 3D printing cost-savings in orthopedic and maxillofacial surgery: cost analysis of operating room time saved with 3D printed anatomic models and surgical guides. Acad Radiol. 2020;27(8):1103–13.

Article  PubMed  Google Scholar 

Wake N. Considerations for Starting a 3D Printing Lab in the Department of Radiology. In: 3D Printing for the Radiologist. New York: Elsevier; 2022. p. 191–200.

Nimeskern L, Feldmann EM, Kuo W, Schwarz S, Goldberg-Bockhorn E, Dürr S, et al. Magnetic resonance imaging of the ear for patient-specific reconstructive surgery. PLoS ONE. 2014;9(8):104975. Place: United States.

Schulz-Wendtland R, Harz M, Meier-Meitinger M, Brehm B, Wacker T, Hahn HK, et al. Semi-automated delineation of breast cancer tumors and subsequent materialization using three-dimensional printing (rapid prototyping). J Surg Oncol. 2017;115(3):238–42. Publisher: John Wiley & Sons, Ltd. https://doi.org/10.1002/jso.24510.

Radenkovic D, Solouk A, Seifalian A. Personalized development of human organs using 3D printing technology. Med Hypotheses. 2016;87:30–3.

Article  PubMed  Google Scholar 

Vaz VM, Kumar L. 3D printing as a promising tool in personalized medicine. Aaps Pharmscitech. 2021;22:1–20.

Article  CAS  Google Scholar 

Paxton NC, Nightingale RC, Woodruff MA. Capturing patient anatomy for designing and manufacturing personalized prostheses. Curr Opin Biotechnol. 2022;73:282–9.

Article  CAS  PubMed  Google Scholar 

Matin-Mann F, Gao Z, Schwieger J, Ulbricht M, Domsta V, Senekowitsch S, et al. Individualized, Additively Manufactured Drug-Releasing External Ear Canal Implant for Prevention of Postoperative Restenosis: Development, In Vitro Testing, and Proof of Concept in an Individual Curative Trial. Pharmaceutics. 2022;14(6):1242.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flores RL, Liss H, Raffaelli S, Humayun A, Khouri KS, Coelho PG, et al. The technique for 3D printing patient-specific models for auricular reconstruction. J Cranio-Maxillofac Surg. 2017;45(6):937–43.

Article  Google Scholar 

Stathopoulou E, Welponer M, Remondino F. Open-source image-based 3D reconstruction pipelines: Review, comparison and evaluation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17. Strasbourg: ISPRS Publications; 2019. p. 331–338.

Nuseir A, Hatamleh MM, Alnazzawi A, Al-Rabab’ah M, Kamel B, Jaradat E. Direct 3D printing of flexible nasal prosthesis: optimized digital workflow from scan to fit. J Prosthodont. 2019;28(1):10–4.

Article  PubMed  Google Scholar 

Ravi T, Ranganathan R, Pugalendhi A, Arumugam S. 3D Printed Patient Specific Models from Medical Imaging-A General Workflow. Mater Today Proc. 2020;22:1237–43.

Article  Google Scholar 

Bannink T, Bouman S, Wolterink R, van Veen R, van Alphen M. Implementation of 3D technologies in the workflow of auricular prosthetics: A method using optical scanning and stereolithography 3D printing. J Prosthet Dent. 2021;125(4):708–13.

Article  CAS  PubMed  Google Scholar 

Wersényi G, Wittenberg T, Sudár A. Handheld 3D Scanning and Image Processing for Printing Body Parts-A Workflow Concept and Current Results. In: 2022 IEEE 1st International Conference on Internet of Digital Reality (IoD). IEEE; 2022. p. 61–68.

Di Rosa L. 3D Printing for Ear Reconstruction. In: 3D Printing in Plastic Reconstructive and Aesthetic Surgery: A Guide for Clinical Practice. New York: Springer; 2022. p. 55–63.

Karayazgan-Saracoglu B, Gunay Y, Atay A. Fabrication of an Auricular Prosthesis Using Computed Tomography and Rapid Prototyping Technique. J Craniofac Surg. 2009;20(4). https://journals.lww.com/jcraniofacialsurgery/Fulltext/2009/07000/Fabrication_of_an_Auricular_Prosthesis_Using.43.aspx. Accessed 9 Sep 2023.

Tsuno NSG, Tsuno MY, Coelho Neto CAF, Noujaim SE, Decnop M, Pacheco FT, et al. Imaging the External Ear: Practical Approach to Normal and Pathologic Conditions. RadioGraphics. 2022;42(2):522–40. PMID: 35119966.

Gomez G, Baeza M, Mateos JC, Rivas JA, Simon FJL, Ortega DM, et al. A Three-Dimensional Printed Customized Bolus: Adapting to the Shape of the Outer Ear. Rep Pract Oncol Radiother J Greatpoland Cancer Cent Poznan Pol Soc Radiat Oncol. 2021;26(2):211–7.

Google Scholar 

Yousaf T, Dervenoulas G, Politis M. Advances in MRI Methodology. Int Rev Neurobiol. 2018;141:31–76. Place: United States.

Bremke M, Leppek R, Werner JA. [Digital volume tomography in ENT medicine]. HNO. 2010;58(8):823–832. Place: Germany.

Stuck BA, Hülse R, Barth TJ. Intraoperative cone beam computed tomography in the management of facial fractures. Int J Oral Maxillofac Surg. 2012;41(10):1171–5. Place: Denmark.

Güldner C, Diogo I, Bernd E, Dräger S, Mandapathil M, Teymoortash A, et al. Visualization of anatomy in normal and pathologic middle ears by cone beam CT. Eur Arch Otorhinolaryngol: Off J Eur Fed Otorhinolaryngol Soc (EUFOS): Affiliated Ger Soc Otorhinolaryngol - Head Neck Surg. 2017;274(2):737–42. Place: Germany.

Kikinis R, Pieper SD, Vosburgh KG. 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support. New York: Springer New York; 2014. p. 277–289. https://doi.org/10.1007/978-1-4614-7657-3_19.

Storck K, Staudenmaier R, Buchberger M, Strenger T, Kreutzer K, Von Bomhard A, et al. Total reconstruction of the auricle: our experiences on indications and recent techniques. Biomed Res Int. 2014;2014:15. Article ID 373286.

Kamio T, Suzuki M, Asaumi R, Kawai T. DICOM segmentation and STL creation for 3D printing: a process and software package comparison for osseous anatomy. 3D Print Med. 2020;6:1–12.

Wan R, Xie W, Li Z, Zhou J. The study of using 3D scan technique to evaluate the expanding method of ear reconstruction before operation. Aesthet Plast Surg. 2020;44:359–64.

Article  Google Scholar 

Hatamleh MM, Watson J. Construction of an implant-retained auricular prosthesis with the aid of contemporary digital technologies: a clinical report. J Prosthodont: Implant Esthet Reconstr Dent. 2013;22(2):132–6.

Article  Google Scholar 

Rodríguez-Arias JP, Gutiérrez Venturini A, Pampín Martínez MM, Gómez García E, Muñoz Caro JM, San Basilio M, et al. Microtia ear reconstruction with patient-specific 3D models–a segmentation protocol. J Clin Med. 2022;11(13):3591.

Article  PubMed  PubMed Central  Google Scholar 

Al Hamad KQ, Al Rashdan BA, Al-Kaff FT. Virtual patient representation with silicone guide and a 3D scanner accessory for a user-friendly facial scanning workflow: A clinical report of smile design and ceramic veneers. J Prosthet Dent. 2023. https://www.sciencedirect.com/science/article/pii/S002239132300286X. Accessed 9 Sep 2023.

Geng J. Structured-light 3D surface imaging: a tutorial. Adv Opt Photon. 2011;3(2):128–60.

Article  CAS  Google Scholar 

Karatas OH, Toy E. Three-dimensional imaging techniques: A literature review. Eur J Dent. 2014;8(01):132–40.

Article  PubMed  PubMed Central  Google Scholar 

Pflug A, Winterstein A, Busch C. Ear detection in 3D profile images based on surface curvature. In: 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE; 2012. p. 1–6.

Shahrom A, Vanezis P, Chapman R, Gonzales A, Blenkinsop C, Rossi M. Techniques in facial identification: computer-aided facial reconstruction using a laser scanner and video superimposition. Int J Legal Med. 1996;108:194–200.

Article  CAS  PubMed  Google Scholar 

Wang D, Jiang H, Pan B, Yang Q, He L, Sun H, et al. Standardized measurement of auricle: A method of high-precision and reliability based on 3D scanning and Mimics software. Exp Ther Med. 2019;18(6):4575–82.

PubMed  PubMed Central  Google Scholar 

Xia S, Guo S, Li J, Istook C. Comparison of different body measurement techniques: 3D stationary scanner, 3D handheld scanner, and tape measurement. J Text Inst. 2019;110(8):1103–13.

Article  Google Scholar 

Koban KC, Cotofana S, Frank K, Green JB, Etzel L, Li Z, et al. Precision in 3-dimensional surface imaging of the face: a handheld scanner comparison performed in a cadaveric model. Aesthet Surg J. 2019;39(4):NP36–44.

Özsoy U, Sekerci R, Hizay A, Yildirim Y, Uysal H. Assessment of reproducibility and reliability of facial expressions using 3D handheld scanner. J Cranio-Maxillofac Surg. 2019;47(6):895–901.

Article 

留言 (0)

沒有登入
gif