Study on the mechanism of CXCL12/CXCR4-axis-mediated upregulation of IL-8 and IL-6 on the biological function of acute T lymphocyte leukaemia cells

Ara T, Song L, Shimada H, Keshelava N, Russell HV, Metelitsa LS, Groshen SG, Seeger RC, DeClerck YA (2009) Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells. Cancer Res 69:329–337. https://doi.org/10.1158/0008-5472.CAN-08-0613

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bruserud Ø, Kittang AO (2010) The chemokine system in experimental and clinical hematology. Curr Top Microbiol Immunol 341:3–12. https://doi.org/10.1007/82_2010_18

Article  CAS  PubMed  Google Scholar 

Chatterjee S, Azad BB, Nimmagadda S (2014) The intricate role of CXCR4 in cancer. Adv Cancer Res 124:31–82. https://doi.org/10.1016/B978-0-12-411638-2.00002-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng J, Li L, Liu Y, Wang Z, Zhu X, Bai X (2012) Interleukin-lalpha induces immunosuppression by mesenchymal stem cells promoting the growth of prostate cancer cells. Mol Med Rep 6:955–960. https://doi.org/10.3892/mmr.2012.1019

Article  CAS  PubMed  Google Scholar 

de Vasconcellos JF, Laranjeira AB, Zanchin NI (2011) Increased CXCL12 and IL-8 in the bone marrow microenvironment in acute lymphoblastic leukemia. Pediatr Blood Cancer 56:568–577

Article  PubMed  Google Scholar 

Gua J, Chen J (2014) Mesenchymal stem cells in the tumor microenvironment. Biomed Rep 1:517–521. https://doi.org/10.3892/br.2013.103

Article  CAS  Google Scholar 

Guyon A (2014) CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems. Front Cell Neurosci 3:1–10. https://doi.org/10.3389/fncel.2014.00065

Article  CAS  Google Scholar 

Kim HK, De La Luz Sierra M, Williams CK, Gulino AV, Tosato G (2006) G-CSF down-regulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells. Blood 108:812–820. https://doi.org/10.1182/blood-2005-10-4162

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kollet O, Spiegel A, Peled A, Petit I, Byk T, Hershkoviz R, Guetta E, Barkai G, Nagler A, Lapidot T (2001) Rapid and efficient homing of human CD341CD382/low CXCR41 stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m null mice. Blood 97:3283–3291. https://doi.org/10.1182/blood.v97.10.3283

Article  CAS  PubMed  Google Scholar 

Konoplev S, Rassidakis GZ, Estey E, Kantarjian H, Liakou CI, Huang X, Xiao L, Andreeff M, Konopleva M, Medeiros LJ (2007) Overexpression of CXCR4 predicts adverse overall and event-free survival in patients with unmutated FLT3 acute myeloid leukemia with normal karyotype. Cancer 109:1152–1156. https://doi.org/10.1002/cncr.22510

Article  CAS  PubMed  Google Scholar 

Meads MB, Gatenby RA, Dalton WS (2009) Environment mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9:665–674. https://doi.org/10.1038/nrc2714

Article  CAS  PubMed  Google Scholar 

Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK, Prior JL, Piwnica-Worms D, Bridger G, Ley TJ, DiPersio JF (2009) Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 113:6206–6214. https://doi.org/10.1182/blood-2008-06-162123

Article  CAS  PubMed  PubMed Central  Google Scholar 

O‘Hayre M, Salanga CL, Handel TM, Allen SJ (2008) Chemokines and cancer: migration, intracellular signaling and intercellular communication in the microenvironment. Biochem J 409:635–649. https://doi.org/10.1042/BJ20071493

Article  CAS  PubMed  Google Scholar 

Rombouts EJC, Pavic B, Löwenberg B, Ploemacher RE (2004) Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood 104:550–557. https://doi.org/10.1182/blood-2004-02-0566

Article  CAS  PubMed  Google Scholar 

Sahin AO, Buitenhuis M (2012) Molecular mechanisms underlying adhesion and migration of hematopoietic stem cells. Cell Adhes Migr 6:39–48. https://doi.org/10.4161/cam.18975

Article  Google Scholar 

Scupoli MT, Donadelli M, Cioffi F, Rossi M, Perbellini O, Malpeli G, Corbioli S, Vinante F, Krampera M, Palmieri M, Scarpa A, Ariola C, Foà R, Pizzolo G (2008) Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-kappaB and JNK/AP-1 pathways. Haematologica 93:524–532. https://doi.org/10.3324/haematol.12098

Article  CAS  PubMed  Google Scholar 

Shen Z-H, Zeng D-F, Kong P-Y, Ma Y-Y, Zhang X (2016) AMD3100 and G-CSF disrupt the cross-talk between leukemia cells and the endosteal niche and enhance their sensitivity to chemotherapeutic drugs in biomimetic polystyrene scaffolds. Blood Cells Mol Dis 59:16–24. https://doi.org/10.1016/j.bcmd.2016.03.009

Article  CAS  PubMed  Google Scholar 

Sheng X, Zhong H, Wan H, Zhong J, Chen F (2016) Granulocyte colony-stimulating factor inhibits CXCR4/SDF-1α signaling and overcomes stromal-mediated drug resistance in the HL-60 cell line. Exp Ther Med 12:396–404. https://doi.org/10.3892/etm.2016.3268

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sison EAR, Magoon D, Li L, Annesley CE, Rau RE, Small D, Brown P (2014) Plerixafor as a chemosensitizing agent in pediatric acute lymphoblastic leukemia: efficacy and potential mechanisms of resistance to CXCR1 inhibition. Oncotarget 5:8947–8958. https://doi.org/10.18632/oncotarget.2407

Article  PubMed  PubMed Central  Google Scholar 

Tavor S, Eisenbach M, Jacob-Hirsch J, Golan T, Petit I, Benzion K, Kay S, Baron S, Amariglio N, Deutsch V, Naparstek E, Rechavi G (2008) The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation. Leukemia 22:2151–5158. https://doi.org/10.1038/leu.2008.238

Article  CAS  PubMed  Google Scholar 

Zeng Z, Shi YX, Samudio IJ, Wang R-Y, Ling X, Frolova O, Levis M, Rubin JB, Negrin RR, Estey EH, Konoplev S, Andreeff M, Konopleva M (2009) Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 113:6215–6224. https://doi.org/10.1182/blood-2008-05-158311

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang W, Zhang X, Fan X, Li D, Qiao Z (2006) Effect of ICAM-1 and LFA-1 and in hyperleukocytic acute myeloid leukaemia. Clin Lab Haematol 28:177–182. https://doi.org/10.1111/j.1365-2257.2006.00784.x

Article  CAS  PubMed  Google Scholar 

Zhang M, Zhang S, Yang Z, Hu J, Hu W, Sun P, Wu L, Han B (2018) Association between the expression levels of IL-6 and IL-6R in the hepatocellular carcinoma microenvironment and postoperative recurrence. Oncol Lett 16:7158–7165. https://doi.org/10.3892/ol.2018.9557

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong JH, Chen FY, Wang HR et al (2006) Mechanism of CAG regimen on patients acute myeloid leukemia cells. Chin J Hematol 77:492–494. https://doi.org/10.1097/01.moh.0000190110.08156.96

Article  Google Scholar 

留言 (0)

沒有登入
gif