Abramovic I, Ulamec M, Katusic Bojanac A et al (2020) miRNA in prostate cancer: challenges toward translation. Epigenomics 12:543–558. https://doi.org/10.2217/epi-2019-0275
Article CAS PubMed Google Scholar
Alvarez-Dominguez JR, Lodish HF (2017) Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood 130:1965–1975. https://doi.org/10.1182/blood-2017-06-788695
Article CAS PubMed PubMed Central Google Scholar
Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. https://doi.org/10.1038/nature02871
Article CAS PubMed ADS Google Scholar
Bach D-H, Lee SK (2018) Long noncoding RNAs in cancer cells. Cancer Lett 419:152–166. https://doi.org/10.1016/j.canlet.2018.01.053
Article CAS PubMed Google Scholar
Bai J, Huang G (2020) Role of long non-coding RNA NEAT1 in the prognosis of prostate cancer patients. Medicine. https://doi.org/10.1097/MD.0000000000020204
Article PubMed PubMed Central Google Scholar
Bhan A, Soleimani M, Mandal SS (2017) Long noncoding RNA and cancer: a New Paradigm. Cancer Res 77:3965–3981. https://doi.org/10.1158/0008-5472.CAN-16-2634
Article CAS PubMed PubMed Central Google Scholar
Chakravarty D, Sboner A, Nair SS et al (2014) The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of Prostate cancer. Nat Commun 5:5383. https://doi.org/10.1038/ncomms6383
Article CAS PubMed Google Scholar
Chandra Gupta S, Nandan Tripathi Y (2017) Potential of long non-coding RNAs in cancer patients: from biomarkers to therapeutic targets. Int J Cancer 140:1955–1967. https://doi.org/10.1002/ijc.30546
Article CAS PubMed Google Scholar
Chen Y, Lin Y, Shu Y et al (2020) Interaction between N(6)-methyladenosine (m(6)A) modification and noncoding RNAs in cancer. Mol Cancer 19:94. https://doi.org/10.1186/s12943-020-01207-4
Article PubMed PubMed Central Google Scholar
Clemson CM, Hutchinson JN, Sara SA et al (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726. https://doi.org/10.1016/j.molcel.2009.01.026
Article CAS PubMed PubMed Central Google Scholar
Derfoul A, Juan AH, Difilippantonio MJ et al (2011) Decreased microRNA-214 levels in Breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the polycomb Ezh2 methyltransferase. Carcinogenesis 32:1607–1614. https://doi.org/10.1093/carcin/bgr184
Article CAS PubMed PubMed Central Google Scholar
Flippot R, Beinse G, Boilève A et al (2019) Long non-coding RNAs in genitourinary malignancies: a whole new world. Nat Rev Urol 16:484–504. https://doi.org/10.1038/s41585-019-0195-1
Gong Z, Shen G, Huang C et al (2022) Downregulation of lncRNA NEAT1 inhibits the proliferation of human cutaneous squamous cell carcinoma in vivo and in vitro. Ann Transl Med 10:79. https://doi.org/10.21037/atm-21-6916
Article CAS PubMed PubMed Central Google Scholar
Halabi S, Small EJ, Kantoff PW et al (2003) Prognostic model for predicting survival in men with hormone-refractory metastatic prostate cancer. J Clin Oncol off J Am Soc Clin Oncol 21:1232–1237. https://doi.org/10.1200/JCO.2003.06.100
He C, Jiang B, Ma J, Li Q (2016) Aberrant NEAT1 expression is associated with clinical outcome in high grade glioma patients. APMIS Acta Pathol Microbiol Immunol Scand 124:169–174. https://doi.org/10.1111/apm.12480
Huang S, Zou C, Tang Y et al (2019) Mir-582-3p and mir-582-5p suppress prostate cancer metastasis to bone by repressing TGF-β signaling. Mol Ther Nucleic Acids 16:91–104. https://doi.org/10.1016/j.omtn.2019.01.004
Article CAS PubMed PubMed Central Google Scholar
Jansen MPHM, Reijm EA, Sieuwerts AM et al (2012) High miR-26a and low CDC2 levels associate with decreased EZH2 expression and with favorable outcome on tamoxifen in metastatic Breast cancer. Breast Cancer Res Treat 133:937–947. https://doi.org/10.1007/s10549-011-1877-4
Article CAS PubMed Google Scholar
Jeon J, Olkhov-Mitsel E, Xie H et al (2020) Temporal Stability and prognostic biomarker potential of the prostate cancer urine miRNA transcriptome. J Natl Cancer Inst 112:247–255. https://doi.org/10.1093/jnci/djz112
Article CAS PubMed Google Scholar
Jiang P, Hao S, Xie L et al (2021) LncRNA NEAT1 contributes to the acquisition of a Tumor like-phenotype induced by PM 2.5 in lung bronchial epithelial cells via HIF-1α activation. Environ Sci Pollut Res Int 28:43382–43393. https://doi.org/10.1007/s11356-021-13735-7
Article CAS PubMed Google Scholar
Li X, Wang X, Song W et al (2018) Oncogenic properties of NEAT1 in prostate cancer cells depend on the CDC5L-AGRN transcriptional regulation circuit. Cancer Res 78:4138–4149. https://doi.org/10.1158/0008-5472.CAN-18-0688
Article CAS PubMed Google Scholar
Li P, Xu H, Yang L et al (2022) E2F transcription factor 2-activated DLEU2 contributes to prostate tumorigenesis by upregulating serum and glucocorticoid-induced protein kinase 1. Cell Death Dis 13:77. https://doi.org/10.1038/s41419-022-04525-1
Article CAS PubMed PubMed Central Google Scholar
Liu Q, Wang G, Li Q et al (2019) Polycomb group proteins EZH2 and EED directly regulate androgen receptor in advanced Prostate cancer. Int J Cancer 145:415–426. https://doi.org/10.1002/ijc.32118
Article CAS PubMed PubMed Central Google Scholar
Liu R-Z, Choi W-S, Jain S et al (2020) The FABP12/PPARγ pathway promotes metastatic transformation by inducing epithelial-to-mesenchymal transition and lipid-derived energy production in Prostate cancer cells. Mol Oncol 14:3100–3120. https://doi.org/10.1002/1878-0261.12818
Article CAS PubMed PubMed Central Google Scholar
Lo U-G, Lee C-F, Lee M-S, Hsieh J-T (2017) The role and mechanism of epithelial-to-mesenchymal transition in prostate cancer progression. Int J Mol Sci 18:2079. https://doi.org/10.3390/ijms18102079
Article CAS PubMed PubMed Central Google Scholar
Mancini M, Grasso M, Muccillo L et al (2021) DNMT3A epigenetically regulates key microRNAs involved in epithelial-to-mesenchymal transition in prostate cancer. Carcinogenesis 42:1449–1460. https://doi.org/10.1093/carcin/bgab101
Article CAS PubMed Google Scholar
Mehra C, Chung J-H, He Y et al (2021) CdGAP promotes Prostate cancer Metastasis by regulating epithelial-to-mesenchymal transition, cell cycle progression, and apoptosis. Commun Biol 4:1042. https://doi.org/10.1038/s42003-021-02520-4
Article CAS PubMed PubMed Central Google Scholar
Morel KL, Sheahan AV, Burkhart DL et al (2021) EZH2 inhibition activates a dsRNA-STING-interferon stress axis that potentiates response to PD-1 checkpoint blockade in Prostate cancer. Nat Cancer 2:444–456. https://doi.org/10.1038/s43018-021-00185-w
Article CAS PubMed PubMed Central Google Scholar
Qiu H, Cao S, Xu R (2021) Cancer incidence, mortality, and burden in China: a time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020. Cancer Commun Lond Engl 41:1037–1048. https://doi.org/10.1002/cac2.12197
Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33. https://doi.org/10.3322/caac.21654
Spizzo R, Almeida MI, Colombatti A, Calin GA (2012) Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31:4577–4587. https://doi.org/10.1038/onc.2011.621
Article CAS PubMed PubMed Central Google Scholar
Steele JC, Torr EE, Noakes KL et al (2006) The polycomb group proteins, BMI-1 and EZH2, are tumour-associated antigens. Br J Cancer 95:1202–1211. https://doi.org/10.1038/sj.bjc.6603369
Article CAS PubMed PubMed Central Google Scholar
Wang F, Zhang W, Song Z et al (2021) A novel miRNA inhibits Metastasis of Prostate cancer via decreasing CREBBP-mediated histone acetylation. J Cancer Res Clin Oncol 147:469–480. https://doi.org/10.1007/s00432-020-03455-9
Article CAS PubMed Google Scholar
Wu Y, Yang L, Zhao J et al (2015) Nuclear-enriched abundant transcript 1 as a diagnostic and prognostic biomarker in Colorectal cancer. Mol Cancer 14:191. https://doi.org/10.1186/s12943-015-0455-5
Comments (0)