Nitric oxide-cyclic GMP role in Ang II induced hyperpolarization in bovine aortic endothelium cell line (BAE-1)

Asada H, Inoue A, Ngako Kadji FM, Hirata K, Shiimura Y, Im D, Shimamura T, Nomura N, Iwanari H, Hamakubo T, Kusano-Arai O, Hisano H, Uemura T, Suno C, Aoki J, Iwata S (2020) The crystal structure of angiotensin II type 2 receptor with endogenous peptide hormone. Structure 28:418–425. https://doi.org/10.1016/j.str.2019.12.003

Article  CAS  PubMed  Google Scholar 

Batenburg W (2005) Angiotensin II-induced vasodilation. Role of bradykinin, NO, and endothelium-derived hyperpolarizing factors. PhD Thesis, Erasmus University, Rotterdam.

Gallinat S, Busche S, Raizada MK, Sumners C (2000) The angiotensin II type 2 receptor: an enigma with multiple variations. Am J Physiol Endocrinol Metab 278:E357–E374. https://doi.org/10.1152/ajpendo.2000.278.3.E357

Article  CAS  PubMed  Google Scholar 

Gao L, Zucker IH (2011) AT2 receptor signaling and sympathetic regulation. Curr Opin Pharmacol 11:124–130. https://doi.org/10.1016/j.coph.2010.11.004

Article  CAS  PubMed  Google Scholar 

Gao J, Chao J, Parbhu KJ, Yu L, Xiao L, Gao F, Gao L (2012) Ontogeny of angiotensin type 2 and type 1 receptor expression in mice. J Renin Angiotensin Aldosterone Syst 13:341–352. https://doi.org/10.1177/1470320312443720

Article  PubMed  Google Scholar 

Gauthier KM, Zhang DX, Edwards EM, Holmes B, Campbell WB (2005) Angiotensin II dilates bovine adrenal cortical arterioles: role of endothelial nitric oxide. Endocrinology 146:3319–3324. https://doi.org/10.1210/en.2005-0129

Article  CAS  PubMed  Google Scholar 

Guimond MO, Wallinder C, Alterman M, Hallberg A, Gallo-Payet N (2013) Comparative functional properties of two structurally similar selective nonpeptide drug-like ligands for the angiotensin II type-2 (AT(2)) receptor. Effects on neurite outgrowth in NG108-15 cells. Eur J Pharmacol 699:160–171. https://doi.org/10.1016/j.ejphar.2012.11.032

Article  CAS  PubMed  Google Scholar 

Hayabuchi Y, Nakaya Y, Yasui S, Mawatari K, Mori K, Suzuki M, Kagami S (2006) Angiotensin II activates intermediate-conductance Ca2+-activated K + channels in arterial smooth muscle cells. J Mol Cell Cardiol 41:972–979. https://doi.org/10.1016/j.yjmcc.2006.07.010

Article  CAS  PubMed  Google Scholar 

Ingraham NE, Barakat AG, Reilkoff R, Bezdicek T, Schacker T, Chipman JG, Tignanelli CJ, Puskarich MA (2020) Understanding the renin-angiotensin-aldosterone-SARS-CoV axis: a comprehensive review. Eur Respir J 56:2000912. https://doi.org/10.1183/13993003.00912-2020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iqbal H, Verma AK, Yadav P, Alam S, Shafiq M, Mishra D, Khan F, Hanif K, Negi AS, Chanda D (2021) Antihypertensive Effect of a Novel angiotensin II receptor blocker Fluorophenyl Benzimidazole: contribution of cGMP, voltage-dependent Calcium channels, and BKCa channels to Vasorelaxant mechanisms. Front Pharmacol 12:611109. https://doi.org/10.3389/fphar.2021.611109

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaschina E, Namsolleck P, Unger T (2017) AT2 receptors in cardiovascular and renal diseases. Pharmacol Res 125:39–47. https://doi.org/10.1016/j.phrs.2017.07.008

Article  CAS  PubMed  Google Scholar 

Kemp BA, Howell NL, Keller SR, Gildea JJ, Padia SH, Carey RM (2016) AT2 receptor activation prevents Sodium Retention and reduces blood pressure in angiotensin II-Dependent Hypertension. Circul Res 119:532–543. https://doi.org/10.1161/CIRCRESAHA.116.308384

Article  CAS  Google Scholar 

Kizub IV, Lakhkar A, Dhagia V, Joshi SR, Jiang H, Wolin MS, Falck JR, Koduru SR, Errabelli R, Jacobs ER, Schwartzman ML, Gupte SA (2016) Involvement of gap junctions between smooth muscle cells in sustained hypoxic pulmonary vasoconstriction development: a potential role for 15-HETE and 20-HETE. Am J Physiol Lung Cell Mol Physiol 310:L772–L783. https://doi.org/10.1152/ajplung.00377.2015

Article  PubMed  PubMed Central  Google Scholar 

Li J, Zhao X, Li X, Lee KM, Olson SC (2007) Angiotensin II type 2 receptor-dependent increases in nitric oxide synthase expression in the pulmonary endothelium are mediated via a G alpha i3/Ras/Raf/MAPK pathway. Am J Physiol Cell Physiol 292:C2185–C2196. https://doi.org/10.1152/ajpcell.00204.2006

Article  CAS  PubMed  Google Scholar 

Li Y, Li XH, Yuan H (2012) Angiotensin II type-2 receptor-specific effects on the cardiovascular system. Cardiovasc Diagn Ther 2:56–62. https://doi.org/10.3978/j.issn.2223-3652.2012.02.02

Article  PubMed  PubMed Central  Google Scholar 

Li XC, Zhang J, Zhuo JL (2017) The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney Diseases. Pharmacol Res 125:21–38. https://doi.org/10.1016/j.phrs.2017.06.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loiola RA, Reis FC, Kawamoto EM, Scavone C, Abdalla DS, Fernandes L, Pesquero JB (2011) Role of vascular kinin B1 and B2 receptors in endothelial nitric oxide metabolism. Peptides 32:1700–1705. https://doi.org/10.1016/j.peptides.2011.06.010

Article  CAS  PubMed  Google Scholar 

Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, Hou C, Wang H, Liu J, Yang D, Xu Y, Cao Z, Gao Z (2020) Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care 24:422. https://doi.org/10.1186/s13054-020-03120-0

Article  PubMed  PubMed Central  Google Scholar 

Pueyo ME, Gonzalez W, Nicoletti A, Savoie F, Arnal JF, Michel JB (2000) Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappab activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol 20:645–651. https://doi.org/10.1161/01.atv.20.3.645

Article  CAS  PubMed  Google Scholar 

Senbel AM, Elmoneim A, Sharabi HM, Mohy El-Din MM (2017) Neuronal voltage-gated potassium channels may modulate nitric oxide synthesis in Corpus Cavernosum. Front Pharmacol 8:297. https://doi.org/10.3389/fphar.2017.00297

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh KD, Karnik SS (2016) Angiotensin receptors: structure, function, signaling and clinical applications. J cell Signal 1:111. https://doi.org/10.4172/jcs.1000111

Article  PubMed  PubMed Central  Google Scholar 

Sollini M, Frieden M, Bény JL (2002) Charybdotoxin-sensitive small conductance K(ca) channel activated by bradykinin and substance P in endothelial cells. Br J Pharmacol 136:1201–1209. https://doi.org/10.1038/sj.bjp.0704819

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sturrock BR, Milne KM, Chevassut TJ (2020) The renin-angiotensin system - a therapeutic target in COVID-19? Clin Med 20:e72–e75. https://doi.org/10.7861/clinmed.2020-0146

Article  Google Scholar 

Taguchi K, Matsumoto T, Kamata K, Kobayashi T (2012) Angiotensin II type 2 receptor-dependent increase in nitric oxide synthase activity in the endothelium of db/db mice is mediated via an MEK pathway. Pharmacol Res 66:41–50. https://doi.org/10.1016/j.phrs.2012.02.010

Article  CAS  PubMed  Google Scholar 

Tsukamoto I, Inoue S, Teramura T, Takehara T, Ohtani K, Akagi M (2013) Activating types 1 and 2 angiotensin II receptors modulate the hypertrophic differentiation of chondrocytes. FEBS open bio 3:279–284. https://doi.org/10.1016/j.fob.2013.07.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Dalen JW, Marcum ZA, Gray SL, Barthold D, van Moll EP, van Gool WA, Crane PK, Larson EB, Richard E (2021) Association of Angiotensin II-Stimulating antihypertensive use and Dementia risk: Post Hoc Analysis of the PreDIVA Trial. Neurology 96:e67–e80. https://doi.org/10.1212/WNL.0000000000010996

Article  CAS  PubMed  PubMed Central  Google Scholar 

van der Graaf AM, Wiegman MJ, Plösch T, Zeeman GG, van Buiten A, Henning RH, Buikema H, Faas MM (2013) Endothelium-dependent relaxation and angiotensin II sensitivity in experimental preeclampsia. PLoS ONE 8:e79884. https://doi.org/10.1371/journal.pone.0079884

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wingler LM, Elgeti M, Hilger D, Latorraca NR, Lerch MT, Staus DP, Dror RO, Kobilka BK, Hubbell WL, Lefkowitz RJ (2019a) Angiotensin analogs with Divergent Bias stabilize distinct receptor conformations. Cell 176:468-478e11. https://doi.org/10.1016/j.cell.2018.12.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wingler LM, McMahon C, Staus DP, Lefkowitz RJ, Kruse AC (2019b) Distinctive activation mechanism for angiotensin receptor revealed by a synthetic nanobody. Cell 176:479-490e12. https://doi.org/10.1016/j.cell.2018.12.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao X, Li X, Trusa S, Olson SC (2005) Angiotensin type 1 receptor is linked to inhibition of nitric oxide production in pulmonary endothelial cells. Regul Pept 132:113–122. https://doi.org/10.1016/j.regpep.2005.09.010

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif