LOC102549726/miR-760-3p network is involved in the progression of ISO-induced pathological cardiomyocyte hypertrophy via endoplasmic reticulum stress

Binas S, Knyrim M, Hupfeld J, Kloeckner U, Rabe S, Mildenberger S, Quarch K, Stratz N, Misiak D, Gekle M, Grossmann C, Schreier B (2020) miR-221 and – 222 target CACNA1C and KCNJ5 leading to altered cardiac ion channel expression and current density. Cell Mol Life Sci 77:903–918. https://doi.org/10.1007/s00018-019-03217-y

Article  CAS  PubMed  Google Scholar 

Correia De Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M (2019) Deciphering miRNAs’ Action through miRNA Editing. Int J Mol Sci 20. https://doi.org/10.3390/ijms20246249

Costa ES, Kurc MC, Drozdz S, Cortez-Dias A N, and, Enguita FJ (2018) The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases. Acta Pharmacol Sin 39:1085–1099. https://doi.org/10.1038/aps.2018.35

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das S, Mondal A, Samanta J, Chakraborty S, Sengupta A (2021) Unfolded protein response during cardiovascular disorders: a tilt towards pro-survival and cellular homeostasis. Mol Cell Biochem 476:4061–4080. https://doi.org/10.1007/s11010-021-04223-0

Article  CAS  PubMed  Google Scholar 

Han D, Gao Q, Cao F (2017) Long noncoding RNAs (LncRNAs) - the dawning of a new treatment for cardiac hypertrophy and heart failure. Biochim Biophys Acta Mol Basis Dis 1863:2078–2084. https://doi.org/10.1016/j.bbadis.2017.02.024

Article  CAS  PubMed  Google Scholar 

Hetz C, Zhang K, Kaufman RJ (2020) Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 21:421–438. https://doi.org/10.1038/s41580-020-0250-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lai Y, He S, Ma L, Lin H, Ren B, Ma J, Zhu X, Zhuang S (2017) HOTAIR functions as a competing endogenous RNA to regulate PTEN expression by inhibiting miR-19 in cardiac hypertrophy. Mol Cell Biochem 432:179–187. https://doi.org/10.1007/s11010-017-3008-y

Article  CAS  PubMed  Google Scholar 

Li RJ, He KL, Li X, Wang LL, Liu CL, He YY (2015) Salubrinal protects cardiomyocytes against apoptosis in a rat myocardial infarction model via suppressing the dephosphorylation of eukaryotic translation initiation factor 2alpha. Mol Med Rep 12:1043–1049. https://doi.org/10.3892/mmr.2015.3508

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, An X, Li Z, Song Y, Li L, Zuo S, Liu N, Yang G, Wang H, Cheng X, Zhang Y, Yang X, Wang J (2016) The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 111:56–65. https://doi.org/10.1093/cvr/cvw078

Article  CAS  PubMed  Google Scholar 

Liu Y, Song JW, Lin JY, Miao R, Zhong JC (2020) Roles of MicroRNA-122 in Cardiovascular Fibrosis and Related Diseases. Cardiovasc Toxicol 20:463–473. https://doi.org/10.1007/s12012-020-09603-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu S, Sun WC, Zhang YL, Lin QY, Liao JW, Song GR, Ma XL, Li HH, Zhang B (2021) SOCS3 negatively regulates Cardiac Hypertrophy via Targeting GRP78-Mediated ER stress during pressure overload. Front Cell Dev Biol 9:629932. https://doi.org/10.3389/fcell.2021.629932

Article  PubMed  PubMed Central  Google Scholar 

Lu P, Ding F, Xiang YK, Hao L, Zhao M (2022) Noncoding RNAs in Cardiac Hypertrophy and Heart failure. Cells 11. https://doi.org/10.3390/cells11050777

Nakamura M, Sadoshima J (2018) Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 15:387–407. https://doi.org/10.1038/s41569-018-0007-y

Article  CAS  PubMed  Google Scholar 

Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194. https://doi.org/10.1146/annurev-pathol-012513-104649

Article  CAS  PubMed  Google Scholar 

Omidkhoda N, Wallace Hayes A, Reiter RJ, Karimi G (2019) The role of MicroRNAs on endoplasmic reticulum stress in myocardial ischemia and cardiac hypertrophy. Pharmacol Res 150:104516. https://doi.org/10.1016/j.phrs.2019.104516

Article  CAS  PubMed  Google Scholar 

Pan W, Zhong Y, Cheng C, Liu B, Wang L, Li A, Xiong L, Liu S (2013) MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy. PLoS ONE 8:e53950. https://doi.org/10.1371/journal.pone.0053950

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panni S, Lovering RC, Porras P, Orchard S (2020) Non-coding RNA regulatory networks. Biochim Biophys Acta Gene Regul Mech 1863:194417. https://doi.org/10.1016/j.bbagrm.2019.194417

Article  CAS  PubMed  Google Scholar 

Primeau JO, Armanious GP, Fisher ME, Young HS (2018) The SarcoEndoplasmic Reticulum Calcium ATPase. Subcell Biochem 87:229–258. https://doi.org/10.1007/978-981-10-7757-9_8

Article  CAS  PubMed  Google Scholar 

Qiannan E, Wang C, Gu X, Gan X, Zhang X, Wang S, Ma J, Zhang L, Zhang R, Su L (2020) Competitive endogenous RNA (ceRNA) regulation network of lncRNA-miRNA-mRNA during the process of the nickel-induced steroidogenesis disturbance in rat Leydig cells. Toxicol In Vitro 63:104721. https://doi.org/10.1016/j.tiv.2019.104721

Rani S, Sreenivasaiah PK, Cho C, Kim DH (2017) Salubrinal alleviates pressure Overload-Induced Cardiac Hypertrophy by inhibiting endoplasmic reticulum stress pathway. Mol Cells 40:66–72. https://doi.org/10.14348/molcells.2017.2259

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. https://doi.org/10.1146/annurev-biochem-051410-092902

Article  CAS  PubMed  Google Scholar 

Rosenbaum AN, Agre KE, Pereira NL (2020) Genetics of dilated cardiomyopathy: practical implications for heart failure management. Nat Rev Cardiol 17:286–297. https://doi.org/10.1038/s41569-019-0284-0

Article  PubMed  Google Scholar 

Shen T, Li Y, Chen Z, Liang S, Qiu Y, Zhu L, Ba G, Lu G, Qiu L (2020) Activating transcription factor 6 (ATF6) negatively regulates Polo-like kinase 4 expression via recruiting C/EBPbeta to the upstream-promoter during ER stress. Biochem Biophys Acta Gene Regul Mech 1863:194488. https://doi.org/10.1016/j.bbagrm.2020.194488

Article  CAS  Google Scholar 

Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262. https://doi.org/10.1016/j.yjmcc.2016.06.001

Article  CAS  PubMed  Google Scholar 

Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–352. https://doi.org/10.1038/nature12986

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP (2012) hERG K(+) channels: structure, function, and clinical significance. Physiol Rev 92:1393–1478. https://doi.org/10.1152/physrev.00036.2011

Article  CAS  PubMed  Google Scholar 

Viereck J, Buhrke A, Foinquinos A, Chatterjee S, Kleeberger JA, Xiao K, Janssen-Peters H, Batkai S, Ramanujam D, Kraft T, Cebotari S, Gueler F, Beyer AM, Schmitz J, Brasen JH, Schmitto JD, Gyongyosi M, Loser A, Hirt MN, Eschenhagen T, Engelhardt S, Bar C, Thum T (2020) Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy. Eur Heart J 41:3462–3474. https://doi.org/10.1093/eurheartj/ehaa519

Article  CAS  PubMed  PubMed Central  Google Scholar 

Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, Remke J, Just A, Fendrich J, Scherf K, Bolesani E, Schambach A, Weidemann F, Zweigerdt R, De Windt LJ, Engelhardt S, Dandekar T, Batkai S, Thum T (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8:326ra322. https://doi.org/10.1126/scitranslmed.aaf1475

Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114:1377–1388. https://doi.org/10.1161/CIRCRESAHA.114.302476

Article  CAS  PubMed  Google Scholar 

Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ, Gong J, Ren S, Wang X, Chen I, Wang H, Gao C, Yokota T, Ang YS, Li S, Cass A, Vondriska TM, Li G, Deb A, Srivastava D, Yang HT, Xiao X, Li H, Wang Y (2016) The long noncoding RNA chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22:1131–1139. https://doi.org/10.1038/nm.4179

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiang M, Yang F, Zhou Y, Li W, Zou Y, Ye P, Zhu L, Wang PX, Chen M (2021) LITAF acts as a novel regulator for pathological cardiac hypertrophy. J Mol Cell Cardiol 156:82–94. https://doi.org/10.1016/j.yjmcc.2021.03.012

Article  CAS  PubMed  Google Scholar 

Xiao L, Gu Y, Sun Y, Chen J, Wang X, Zhang Y, Gao L, Li L (2019) The long noncoding RNA XIST regulates cardiac hypertrophy by targeting miR-101. J Cell Physiol 234:13680–13692. https://doi.org/10.1002/jcp.28047

Article  CAS  PubMed  Google Scholar 

Xu Y, Luo Y, Liang C, Zhang T (2020) LncRNA-Mhrt regulates cardiac hypertrophy by modulating the miR-145a-5p/KLF4/myocardin axis. J Mol Cell Cardiol 139:47–61. https://doi.org/10.1016/j.yjmcc.2019.12.013

Article  CAS  PubMed  Google Scholar 

Yang KC, Foeger NC, Marionneau C, Jay PY, Mcmullen JR, Nerbonne JM (2010) Homeostatic regulation of electrical excitability in physiological cardiac hypertrophy. J Physiol 588:5015–5032. https://doi.org/10.1113/jphysiol.2010.197418

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif