Charge transport and hydrodynamics in materials

International Energy Agency. Digitalization and energy (IEA, 2017).

Shehabi, A., Smith, S. J., Masanet, E. & Koomey, J. Data center growth in the United States: decoupling the demand for services from electricity use. Env. Res. Lett. 13, 124030 (2018).

Article  Google Scholar 

Masanet, E., Shehabi, A., Lei, N., Smith, S. & Koomey, J. Recalibrating global data center energy-use estimates. Science 367, 984–986 (2020).

Article  CAS  Google Scholar 

International Energy Agency. Data centres and data transmission networks. IEA https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks (2022).

Lundstrom, M. S. & Alam, M. A. Moore’s law: the journey ahead. Science 378, 722–723 (2022).

Article  CAS  Google Scholar 

Molenkamp, L. & de Jong, M. Observation of Knudsen and Gurzhi transport regimes in a two-dimensional wire. Solid State Electron. 37, 551–553 (1994).

Article  CAS  Google Scholar 

de Jong, M. J. M. & Molenkamp, L. W. Hydrodynamic electron flow in high-mobility wires. Phys. Rev. B 51, 13389–13402 (1995). Early 2DEG hydrodynamic transport observations and dual-relaxation-time Boltzmann transport equation formalism.

Article  Google Scholar 

Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058–1061 (2016). One of three papers that were published back to back reporting transport measurements suggesting electron hydrodynamics.

Article  CAS  Google Scholar 

Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016). Another of the three papers that were published back to back reporting transport measurements suggesting electron hydrodynamics.

Article  CAS  Google Scholar 

Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Evidence for hydrodynamic electron flow in PdCoO2. Science 351, 1061–1064 (2016). The third of three papers that were published back to back reporting transport measurements suggesting electron hydrodynamics.

Article  CAS  Google Scholar 

Levitov, L. & Falkovich, G. Electron viscosity, current vortices and negative nonlocal resistance in graphene. Nat. Phys. 12, 672–676 (2016).

Article  CAS  Google Scholar 

Bandurin, D. A. et al. Fluidity onset in graphene. Nat. Commun. 9, 4533 (2018).

Article  Google Scholar 

Gurzhi, R. Minimum of resistance in impurity-free conductors. Sov. Phys. JETP 44, 771 (1963).

CAS  Google Scholar 

Gurzhi, R. N. Hydrodynamic effects in solids at low temperature. Sov. Phys. Usp. 11, 255 (1968). Early review article by Gurzhi, who predicted electron hydrodynamics theoretically.

Article  Google Scholar 

Kiselev, E. I. & Schmalian, J. Boundary conditions of viscous electron flow. Phys. Rev. B 99, 035430 (2019).

Article  CAS  Google Scholar 

Moessner, R., Morales-Durán, N., Surówka, P. & Witkowski, P. Boundary-condition and geometry engineering in electronic hydrodynamics. Phys. Rev. B 100, 155115 (2019).

Article  CAS  Google Scholar 

Aharon-Steinberg, A. et al. Direct observation of vortices in an electron fluid. Nature 607, 74–80 (2022). Direct observation of vortices in electron fluids in non-channel geometries.

Article  CAS  Google Scholar 

Wolf, Y., Aharon-Steinberg, A., Yan, B. & Holder, T. Para-hydrodynamics from weak surface scattering in ultraclean thin flakes. Nat. Commun. 14, 2334 (2023).

Article  CAS  Google Scholar 

Sulpizio, J. A. et al. Visualizing Poiseuille flow of hydrodynamic electrons. Nature 576, 75–79 (2019). Direct visualization of electron hydrodynamics using spatially resolved transport measurements.

Article  CAS  Google Scholar 

Ku, M. J. H. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537–541 (2020).

Article  CAS  Google Scholar 

Gooth, J. et al. Thermal and electrical signatures of a hydrodynamic electron fluid in tungsten diphosphide. Nat. Commun. 9, 4093 (2018).

Article  CAS  Google Scholar 

Vool, U. et al. Imaging phonon-mediated hydrodynamic flow in WTe2. Nat. Phys. 17, 1216–1220 (2021). Observation of electron hydrodynamics in bulk high-carrier-density materials.

Article  CAS  Google Scholar 

Varnavides, G., Jermyn, A. S., Anikeeva, P., Felser, C. & Narang, P. Electron hydrodynamics in anisotropic materials. Nat. Commun. 11, 4710 (2020). Group-theoretical classification of viscosity tensor components in anisotropic materials beyond graphene.

Article  CAS  Google Scholar 

Varnavides, G., Wang, Y., Moll, P. J. W., Anikeeva, P. & Narang, P. Mesoscopic finite-size effects of unconventional electron transport in pdcoo2. Phys. Rev. Mater. 6, 045002 (2022).

Article  CAS  Google Scholar 

Wang, Y. et al. Generalized design principles for hydrodynamic electron transport in anisotropic metals. Phys. Rev. Mater. 6, 083802 (2022).

Article  CAS  Google Scholar 

Lucas, A. & Fong, K. C. Hydrodynamics of electrons in graphene. J. Phys. Condens. Matter 30, 053001 (2018).

Article  Google Scholar 

Narozhny, B. N. Hydrodynamic approach to two-dimensional electron systems. Riv. Nuovo Climento 45, 661–736 (2022).

Article  CAS  Google Scholar 

Fritz, L. & Scaffidi, T. Hydrodynamic electronic transport. Preprint at https://doi.org/10.48550/arXiv.2303.14205 (2023).

Kumar, N. et al. Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2. Nat. Commun. 8, 1642 (2017).

Article  Google Scholar 

Kumar, N. et al. Extremely high conductivity observed in the triple point topological metal MoP. Nat. Commun. 10, 2475 (2019).

Article  Google Scholar 

Gooth, J. et al. Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP. Nature 547, 324–327 (2017).

Article  CAS  Google Scholar 

Kumar, N., Guin, S. N., Manna, K., Shekhar, C. & Felser, C. Topological quantum materials from the viewpoint of chemistry. Chem. Rev. 121, 2780–2815 (2021).

Article  CAS  Google Scholar 

Wang, J., Yox, P. & Kovnir, K. Flux growth of phosphide and arsenide crystals. Front. Chem. 8, 186 (2020).

Article  CAS  Google Scholar 

Takatsu, H. et al. Roles of high-frequency optical phonons in the physical properties of the conductive delafossite PdCoO2. J. Phys. Soc. Jpn 76, 104701 (2007).

Article  Google Scholar 

Bachmann, M. D. et al. Directional ballistic transport in the two-dimensional metal PdCoO2. Nat. Phys. 18, 819–824 (2022).

Article  CAS  Google Scholar 

Han, H. J. et al. Topological metal MoP nanowire for interconnect. Adv. Mater. 35, 2208965 (2023).

Article  CAS  Google Scholar 

Callaway, J. Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959).

Article  CAS  Google Scholar 

Jaoui, A. et al. Departure from the Wiedemann–Franz law in WP2 driven by mismatch in T-square resistivity prefactors. npj Quant. Mater. 3, 64 (2018).

Article  CAS  Google Scholar 

Jaoui, A., Fauqué, B. & Behnia, K. Thermal resistivity and hydrodynamics of the degenerate electron fluid in antimony. Nat. Commun. 12, 195 (2021).

Article  CAS  Google Scholar 

Lee, S. et al. Anomalously low electronic thermal conductivity in metallic vanadium dioxide. Science 355, 371–374 (2017).

Article  CAS  Google Scholar 

Torre, I., Tomadin, A., Geim, A. K. & Polini, M. Nonlocal transport and the hydrodynamic shear viscosity in graphene. Phys. Rev. B 92, 165433 (2015).

Article  Google Scholar 

Krishna Kumar, R. et al. Superballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys. 13, 1182–1185 (2017).

Article  CAS  Google Scholar 

Levin, A. D., Gusev, G. M., Levinson, E. V., Kvon, Z. D. & Bakarov, A. K. Vorticity-induced negative nonlocal resistance in a viscous two-dimensional electron system. Phys. Rev. B 97, 245308 (2018).

Article  CAS  Google Scholar 

Braem, B. A. et al. Scanning gate microscopy in a viscous electron fluid. Phys. Rev. B 98, 241304 (2018).

Article  CAS  Google Scholar 

Berdyugin, A. I. et al. Measuring Hall viscosity of graphene’s electron fluid. Science 364, 162–165 (2019).

Article  CAS  Google Scholar 

Kim, M. et al. Control of electron–electron interaction in graphene by proximity screening. Nat. Commun. 11, 2339 (2020).

Article  CAS  Google Scholar 

Gusev, G. M., Jaroshevich, A. S., Levin, A. D., Kvon, Z. D. & Bakarov, A. K. Stokes flow around an obstacle in viscous two-dimensional electron liquid. Sci. Rep. 10, 7860 (2020).

Article  CAS  Google Scholar 

Ginzburg, L. V. et al. Superballistic electron flow through a point contact in a Ga[Al]As heterostructure. Phys. Rev. Res. 3, 023033 (2021).

Article  CAS  Google Scholar 

Gupta, A. et al. Hydrodynamic and ballistic transport over large length scales in GaAs/AlGaAs. Phys. Rev. Lett. 126, 076803 (2021).

Article  CAS  Google Scholar 

Pellegrino, F. M. D., Torre, I., Geim, A. K. & Polini, M. Electron hydrodynamics dilemma: whirlpools or no whirlpools. Phys. Rev. B 94, 155414 (2016).

Article 

留言 (0)

沒有登入
gif