Vapour-phase deposition of two-dimensional layered chalcogenides

Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

Article  CAS  Google Scholar 

Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

Article  CAS  Google Scholar 

Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nat. Photon. 6, 749–758 (2012).

Article  CAS  Google Scholar 

Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

Article  CAS  Google Scholar 

Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

Article  Google Scholar 

Zhou, J. et al. Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nat. Mater. https://doi.org/10.1038/s41563-022-01291-5 (2022). This study demonstrates the importance of regulating the precursors’ vapour pressure for effectively engineering the phase and composition of synthesized 2D materials.

Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. https://doi.org/10.1038/natrevmats.2017.33 (2017).

Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

Article  Google Scholar 

Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

Article  CAS  Google Scholar 

Lembke, D., Bertolazzi, S. & Kis, A. Single-layer MoS2 electronics. Acc. Chem. Res. 48, 100–110 (2015).

Article  CAS  Google Scholar 

Hwangbo, S., Hu, L., Hoang, A. T., Choi, J. Y. & Ahn, J.-H. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 17, 500–506 (2022).

Article  CAS  Google Scholar 

Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

Article  CAS  Google Scholar 

Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

Article  CAS  Google Scholar 

Choi, M. et al. Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS2 backplane. Sci. Adv. 6, eabb5898 (2020).

Article  CAS  Google Scholar 

Hoang, A. T. et al. Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01460-w (2023).

Wang, S. et al. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21, 1225–1239 (2022).

Article  CAS  Google Scholar 

Wang, S., Liu, X. & Zhou, P. The road for 2D semiconductors in the silicon age. Adv. Mater. 34, 2106886 (2022).

Article  CAS  Google Scholar 

Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 10, 765–769 (2015).

Article  CAS  Google Scholar 

Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

Article  CAS  Google Scholar 

Yu, W. et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 31, 1903779 (2019).

Article  CAS  Google Scholar 

Zheng, C. et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv. 4, eaar7720 (2018).

Article  Google Scholar 

Luo, Y. et al. Electrically switchable anisotropic polariton propagation in a ferroelectric van der Waals semiconductor. Nat. Nanotechnol. 18, 350–356 (2023).

Article  CAS  Google Scholar 

Xue, F. et al. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv. Funct. Mater. 28, 1803738 (2018).

Article  Google Scholar 

Vargas, A. et al. Tunable and laser-reconfigurable 2D heterocrystals obtained by epitaxial stacking of crystallographically incommensurate Bi2Se3 and MoS2 atomic layers. Sci. Adv. 3, e1601741 (2017).

Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

Article  CAS  Google Scholar 

Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

Article  CAS  Google Scholar 

Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

Article  CAS  Google Scholar 

Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

Article  CAS  Google Scholar 

Deng, Y. et al. Controlled growth of 3R phase tantalum diselenide and its enhanced superconductivity. J. Am. Chem. Soc. 142, 2948–2955 (2020).

Article  CAS  Google Scholar 

Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

Article  CAS  Google Scholar 

Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

Article  CAS  Google Scholar 

Tan, Q. et al. Layer-dependent correlated phases in WSe2/MoS2 moiré superlattice. Nat. Mater. https://doi.org/10.1038/s41563-023-01521-4 (2023).

Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

Article  CAS  Google Scholar 

Ahn, E. C. 2D materials for spintronic devices. npj 2D Mater. Appl. 4, 17 (2020).

Article  CAS  Google Scholar 

Ross, J. S. et al. Interlayer exciton optoelectronics in a 2D heterostructure p–n junction. Nano Lett. 17, 638–643 (2017).

Article  CAS  Google Scholar 

Coogan, Á. & Gun’ko, Y. K. Solution-based ‘bottom-up’ synthesis of group VI transition metal dichalcogenides and their applications. Mater. Adv. 2, 146–164 (2021).

Article  CAS  Google Scholar 

Sun, Y., Terrones, M. & Schaak, R. E. Colloidal nanostructures of transition-metal dichalcogenides. Acc. Chem. Res. 54, 1517–1527 (2021).

Article  CAS  Google Scholar 

Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

Article  CAS  Google Scholar 

Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

Article  CAS  Google Scholar 

Shi, Y., Li, H. & Li, L.-J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44, 2744–2756 (2015).

Article  CAS  Google Scholar 

Cai, Z., Liu, B., Zou, X. & Cheng, H.-M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118, 6091–6133 (2018).

Article  CAS  Google Scholar 

Kang, T. et al. Strategies for controlled growth of transition metal dichalcogenides by chemical vapor deposition for integrated electronics. ACS Mater. Au 2, 665–685 (2022).

Article  CAS  Google Scholar 

Venables, J. A., Spiller, G. D. T. & Hanbucken, M. Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399 (1984).

Article  Google Scholar 

Sun, L. et al. Chemical vapour deposition. Nat. Rev. Methods Primers 1, 5 (2021).

Article  CAS  Google Scholar 

Reichelt, K. Nucleation and growth of thin films. Vacuum 38, 1083–1099 (1988).

Article  CAS  Google Scholar 

Dong, J., Zhang, L., Wu, B., Ding, F. & Liu, Y. Theoretical study of chemical vapor deposition synthesis of graphene and beyond: challenges and perspectives. J. Phys. Chem. Lett. 12, 7942–7963 (2021).

Article  CAS  Google Scholar 

Choudhury, T. H., Zhang, X., Al Balushi, Z. Y., Chubarov, M. & Redwing, J. M. Epitaxial growth of two-dimensional layered transition metal dichalcogenides. Annu. Rev. Mater. Res. 50, 155–177 (2020). This review article summarizes the fundamentals and technical approaches for the epitaxy of 2D layered TMD materials, as well as the characterization techniques for large-area epitaxial films.

Article  CAS  Google Scholar 

Mortelmans, W., De Gendt, S., Heyns, M. & Merckling, C. Epitaxy of 2D chalcogenides: aspects and consequences of weak van der Waals coupling. Appl. Mater. Today 22, 100975 (2021).

Article  Google Scholar 

Zhu, J. et al. Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01375-6 (2023). This study demonstrates a back-end-of-line compatible, low-temperature MOCVD growth approach and subsequent device fabrication process flow on a 200-mm platform, enabling the direct integration of 2D MoS2transistors with silicon CMOS circuits.

Bhowmik, S. & Govind Rajan, A. Chemical vapor deposition of 2D materials: a review of modeling, simulation, and machine learning studies. iScience 25, 103832 (2022).

Article  Google Scholar 

Lei, J., Xie, Y., Kutana, A., Bets, K. V. & Yakobson, B. I. Salt-assisted MoS2 growth: molecular mechanisms from the first principles. J. Am. Chem. Soc. 144, 7497–7503 (2022).

Article  CAS 

留言 (0)

沒有登入
gif