Deubiquitinases in cancer

Swatek, K. N. & Komander, D. Ubiquitin modifications. Cell Res. 26, 399–422 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

Article  CAS  PubMed  Google Scholar 

Dikic, I. & Schulman, B. A. An expanded lexicon for the ubiquitin code. Nat. Rev. Mol. Cell Biol. 24, 273–287 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Lacoursiere, R. E., Hadi, D. & Shaw, G. S. Acetylation, phosphorylation, ubiquitination (oh my!): following post-translational modifications on the ubiquitin road. Biomolecules 12, 467 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

Article  CAS  PubMed  Google Scholar 

Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291–322 (2012).

Article  CAS  PubMed  Google Scholar 

Clague, M. J. & Urbe, S. Ubiquitin: same molecule, different degradation pathways. Cell 143, 682–685 (2010).

Article  CAS  PubMed  Google Scholar 

Meyer, H., Bug, M. & Bremer, S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14, 117–123 (2012).

Article  CAS  PubMed  Google Scholar 

Hurley, J. H. The ESCRT complexes. Crit. Rev. Biochem. Mol. Biol. 45, 463–487 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349–364 (2018).

Article  CAS  PubMed  Google Scholar 

Haas, T. L. et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831–844 (2009).

Article  CAS  PubMed  Google Scholar 

Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. & Chen, Z. J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

Article  CAS  PubMed  Google Scholar 

Wu, C. J., Conze, D. B., Li, T., Srinivasula, S. M. & Ashwell, J. D. Sensing of Lys63-linked polyubiquitination by NEMO is a key event in NF-κB activation [corrected]. Nat. Cell Biol. 8, 398–406 (2006).

Article  CAS  PubMed  Google Scholar 

Hrdinka, M. & Gyrd-Hansen, M. The Met1-linked ubiquitin machinery: emerging themes of (de)regulation. Mol. Cell 68, 265–280 (2017).

Article  CAS  PubMed  Google Scholar 

Harper, J. W., Ordureau, A. & Heo, J. M. Building and decoding ubiquitin chains for mitophagy. Nat. Rev. Mol. Cell Biol. 19, 93–108 (2018).

Article  CAS  PubMed  Google Scholar 

Clague, M. J., Urbe, S. & Komander, D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat. Rev. Mol. Cell Biol. 20, 338–352 (2019). This work presents a comprehensive overview of DUB specificity and how this influences cell biology.

Article  CAS  PubMed  Google Scholar 

Mevissen, T. E. T. & Komander, D. Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem. 86, 159–192 (2017). This work presents a comprehensive overview of DUB specificity and mechanism of action.

Article  CAS  PubMed  Google Scholar 

Ye, Y., Scheel, H., Hofmann, K. & Komander, D. Dissection of USP catalytic domains reveals five common insertion points. Mol. Biosyst. 5, 1797–1808 (2009).

Article  CAS  PubMed  Google Scholar 

Kumari, N. et al. The roles of ubiquitin modifying enzymes in neoplastic disease. Biochim. Biophys. Acta Rev. Cancer 1868, 456–483 (2017).

Article  CAS  PubMed  Google Scholar 

Sahtoe, D. D. & Sixma, T. K. Layers of DUB regulation. Trends Biochem. Sci. 40, 456–467 (2015).

Article  CAS  PubMed  Google Scholar 

Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

Article  CAS  PubMed  Google Scholar 

Sacco, J. J., Coulson, J. M., Clague, M. J. & Urbe, S. Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life 62, 140–157 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000). This seminal paper discusses the cellular pathways that drive oncogenesis.

Article  CAS  PubMed  Google Scholar 

Keusekotten, K. et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153, 1312–1326 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakagawa, T. et al. Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation. Genes. Dev. 22, 37–49 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glinsky, G. V. Genomic models of metastatic cancer: functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated Polycomb group (PcG) protein chromatin silencing pathway. Cell Cycle 5, 1208–1216 (2006).

Article  CAS  PubMed  Google Scholar 

Zhang, X. Y. et al. The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol. Cell 29, 102–111 (2008). This paper links the USP22 DUB to the SAGA transcriptional regulator complex that probably underpins its ‘death-from-cancer’ gene status.

Article  PubMed  PubMed Central  Google Scholar 

Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature 459, 717–721 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmitz, R. et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J. Exp. Med. 206, 981–989 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Testa, J. R. et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat. Genet. 43, 1022–1025 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Popova, T. et al. Germline BAP1 mutations predispose to renal cell carcinomas. Am. J. Hum. Genet. 92, 974–980 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tesch, M. E. et al. Concurrent germline and somatic pathogenic BAP1 variants in a patient with metastatic bladder cancer. NPJ Genom. Med. 5, 12 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Masclef, L. et al. Roles and mechanisms of BAP1 deubiquitinase in tumor suppression. Cell Death Differ. 28, 606–625 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harbour, J. W. et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330, 1410–1413 (2010). This study identifies mutations in BAP1 that underlie tumour development.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bignell, G. R. et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nat. Genet. 25, 160–165 (2000). This study identifies CYLD mutation as the cause of a familial tumour predisposition syndrome.

Article  CAS  PubMed  Google Scholar 

Wang, Y. &

留言 (0)

沒有登入
gif