Chen, B., Sun, Y., Niu, J., Jarugumilli, G. K. & Wu, X. Protein lipidation in cell signaling and diseases: function, regulation, and therapeutic opportunities. Cell Chem. Biol. 25, 817–831 (2018).
Article CAS PubMed PubMed Central Google Scholar
Jiang, H. et al. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem. Rev. 118, 919–988 (2018).
Article CAS PubMed PubMed Central Google Scholar
Berndt, N., Hamilton, A. D. & Sebti, S. M. Targeting protein prenylation for cancer therapy. Nat. Rev. Cancer 11, 775–791 (2011).
Article CAS PubMed PubMed Central Google Scholar
Meinnel, T., Dian, C. & Giglione, C. Myristoylation, an ancient protein modification mirroring eukaryogenesis and evolution. Trends Biochem. Sci. 45, 619–632 (2020).
Article CAS PubMed Google Scholar
Lanyon-Hogg, T., Faronato, M., Serwa, R. A. & Tate, E. W. Dynamic protein acylation: new substrates, mechanisms, and drug targets. Trends Biochem. Sci. 42, 566–581 (2017).
Article CAS PubMed Google Scholar
Tang, H. & Han, M. Fatty acids regulate germline sex determination through ACS-4-dependent myristoylation. Cell 169, 457–469.e13 (2017).
Article CAS PubMed Google Scholar
Lee, H. W. et al. A phase II trial of tipifarnib for patients with previously treated, metastatic urothelial carcinoma harboring HRAS mutations. Clin. Cancer Res. 26, 5113–5119 (2020).
Article CAS PubMed Google Scholar
Ho, A. L. et al. Tipifarnib in head and neck squamous cell carcinoma with HRAS mutations. J. Clin. Oncol. 39, 1856–1864 (2021). This study describes the clinical application of a farnesyltransferase inhibitor in HRAS-mutant cancers.
Article CAS PubMed PubMed Central Google Scholar
Mariscal, J. et al. Comprehensive palmitoyl-proteomic analysis identifies distinct protein signatures for large and small cancer-derived extracellular vesicles. J. Extracell. Vesicles 9, 1764192 (2020).
Article PubMed PubMed Central Google Scholar
Tohumeken, S. et al. Palmitoylated proteins on AML-derived extracellular vesicles promote myeloid-derived suppressor cell differentiation via TLR2/Akt/mTOR signaling. Cancer Res. 80, 3663–3676 (2020).
Article CAS PubMed Google Scholar
Clara, J. A., Monge, C., Yang, Y. & Takebe, N. Targeting signalling pathways and the immune microenvironment of cancer stem cells — a clinical update. Nat. Rev. Clin. Oncol. 17, 204–232 (2020).
Kallemeijn, W. W. et al. Validation and invalidation of chemical probes for the human N-myristoyltransferases. Cell Chem. Biol. 26, 892–900.e4 (2019). The study has used an NMT inhibitor and demonstrated that widely used legacy tool compounds have primarily or exclusively off-target effects.
Article CAS PubMed PubMed Central Google Scholar
Wang, M. & Casey, P. J. Protein prenylation: unique fats make their mark on biology. Nat. Rev. Mol. Cell Biol. 17, 110–122 (2016).
Article CAS PubMed Google Scholar
Taylor, J. S., Reid, T. S., Terry, K. L., Casey, P. J. & Beese, L. S. Structure of mammalian protein geranylgeranyltransferase type-I. EMBO J. 22, 5963–5974 (2003).
Article CAS PubMed PubMed Central Google Scholar
Park, H. W., Boduluri, S. R., Moomaw, J. F., Casey, P. J. & Beese, L. S. Crystal structure of protein farnesyltransferase at 2.25 Ångstrom resolution. Science 275, 1800–1804 (1997).
Article CAS PubMed Google Scholar
Zverina, E. A., Lamphear, C. L., Wright, E. N. & Fierke, C. A. Recent advances in protein prenyltransferases: substrate identification, regulation, and disease interventions. Curr. Opin. Chem. Biol. 16, 544–552 (2012).
Article CAS PubMed PubMed Central Google Scholar
Storck, E. M. et al. Dual chemical probes enable quantitative system-wide analysis of protein prenylation and prenylation dynamics. Nat. Chem. 11, 552–561 (2019). This study provides evidence for the extent of alternative prenylation, and tools for dissecting farnesyltransferase and geranylgeranyl transferase substrates.
Article CAS PubMed PubMed Central Google Scholar
Hampton, S. E., Dore, T. M. & Schmidt, W. K. Rce1: mechanism and inhibition. Crit. Rev. Biochem. Mol. Biol. 53, 157–174 (2018).
Article CAS PubMed PubMed Central Google Scholar
Diver, M. M., Pedi, L., Koide, A., Koide, S. & Long, S. B. Atomic structure of the eukaryotic intramembrane RAS methyltransferase ICMT. Nature 553, 526–529 (2018).
Article CAS PubMed PubMed Central Google Scholar
Manolaridis, I. et al. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 504, 301–305 (2013).
Article CAS PubMed Google Scholar
Recchi, C. & Seabra, M. C. Novel functions for Rab GTPases in multiple aspects of tumour progression. Biochem. Soc. Trans. 40, 1398–1403 (2012).
Article CAS PubMed PubMed Central Google Scholar
Jin, H. et al. Rab GTPases: central coordinators of membrane trafficking in cancer. Front. Cell Dev. Biol. 9, 648384 (2021).
Article PubMed PubMed Central Google Scholar
Leung, K. F., Baron, R. & Seabra, M. C. Thematic review series: lipid posttranslational modifications. geranylgeranylation of Rab GTPases. J. Lipid Res. 47, 467–475 (2006).
Article CAS PubMed Google Scholar
Winter-Vann, A. M. & Casey, P. J. Post-prenylation-processing enzymes as new targets in oncogenesis. Nat. Rev. Cancer 5, 405–412 (2005).
Article CAS PubMed Google Scholar
Kuchay, S. et al. GGTase3 is a newly identified geranylgeranyltransferase targeting a ubiquitin ligase. Nat. Struct. Mol. Biol. 26, 628–636 (2019).
Article CAS PubMed PubMed Central Google Scholar
Shirakawa, R. et al. A SNARE geranylgeranyltransferase essential for the organization of the Golgi apparatus. EMBO J. 39, e104120 (2020).
Article CAS PubMed PubMed Central Google Scholar
Boudreau, D. M., Yu, O. & Johnson, J. Statin use and cancer risk: a comprehensive review. Expert Opin. Drug Saf. 9, 603–621 (2010).
Article CAS PubMed PubMed Central Google Scholar
Jung, D. & Bachmann, H. S. Regulation of protein prenylation. Biomed. Pharmacother. 164, 114915 (2023).
Article CAS PubMed Google Scholar
Brandt, A. C., Koehn, O. J. & Williams, C. L. SmgGDS: an emerging master regulator of prenylation and trafficking by small GTPases in the Ras and Rho families. Front. Mol. Biosci. 8, 685135 (2021).
Article PubMed PubMed Central Google Scholar
Zhou, M. et al. VPS35 binds farnesylated N-Ras in the cytosol to regulate N-Ras trafficking. J. Cell Biol. 214, 445–458 (2016).
Article CAS PubMed PubMed Central Google Scholar
Zimmermann, G. et al. Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling. Nature 497, 638–642 (2013).
Article CAS PubMed Google Scholar
Garcia-Mata, R., Boulter, E. & Burridge, K. The ‘invisible hand’: regulation of RHO GTPases by RHOGDIs. Nat. Rev. Mol. Cell Biol. 12, 493–504 (2011).
Article CAS PubMed PubMed Central Google Scholar
Losada de la Lastra, A., Hassan, S. & Tate, E. W. Deconvoluting the biology and druggability of protein lipidation using chemical proteomics. Curr. Opin. Chem. Biol. 60, 97–112 (2021).
Article CAS PubMed Google Scholar
Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J. & Der, C. J. Drugging the undruggable RAS: mission possible? Nat. Rev. Drug Discov. 13, 828–851 (2014).
Article CAS PubMed PubMed Central Google Scholar
Prior, I. A., Hood, F. E. & Hartley, J. L. The frequency of Ras mutations in cancer. Cancer Res. 80, 2969–2974 (2020).
Comments (0)