The pseudoenzyme ADPRHL1 affects cardiac function by regulating the ROCK pathway

Ribeiro AJM, Tyzack JD, Borkakoti N, Thornton JM. Identifying pseudoenzymes using functional annotation: pitfalls of common practice. FEBS J. 2020;287(19):4128–40.

Article  CAS  PubMed  Google Scholar 

Pils B, Schultz J. Inactive enzyme-homologues find new function in regulatory processes. J Mol Biol. 2004;340(3):399–404.

Article  CAS  PubMed  Google Scholar 

Kung JE, Jura N. Structural Basis for the Non-catalytic Functions of Protein Kinases. Structure (London, England: 1993). 2016;24(1):7–24.

Article  CAS  PubMed  Google Scholar 

Ribeiro AJM, Das S, Dawson N, Zaru R, Orchard S, Thornton JM, Orengo C, Zeqiraj E, Murphy JM, Eyers PA. Emerging concepts in pseudoenzyme classification, evolution, and signaling. Sci Signal 12(594) (2019).

Adrain C. Pseudoenzymes: dead enzymes with a lively role in biology. FEBS J. 2020;287(19):4102–5.

Article  CAS  PubMed  Google Scholar 

Murphy JM, Mace PD, Eyers PA. Live and let die: insights into pseudoenzyme mechanisms from structure. Curr Opin Struct Biol. 2017;47:95–104.

Article  CAS  PubMed  Google Scholar 

Isrie M, ZamaniEsteki M, Peeters H, Voet T, Van Houdt J, Van Paesschen W, Van Esch H. Homozygous missense mutation in STYXL1 associated with moderate intellectual disability, epilepsy and behavioural complexities. Eur J Med Genet. 2015;58(4):205–10.

Article  PubMed  Google Scholar 

Reiterer V, Eyers PA, Farhan H. Day of the dead: pseudokinases and pseudophosphatases in physiology and disease. Trends Cell Biol. 2014;24(9):489–505.

Article  CAS  PubMed  Google Scholar 

Siligan C, Ban J, Bachmaier R, Spahn L, Kreppel M, Schaefer KL, Poremba C, Aryee DN, Kovar H. EWS-FLI1 target genes recovered from Ewing’s sarcoma chromatin. Oncogene. 2005;24(15):2512–24.

Article  CAS  PubMed  Google Scholar 

Zaru R, Magrane M, Orchard S. Challenges in the annotation of pseudoenzymes in databases: the UniProtKB approach. FEBS J. 2020;287(19):4114–27.

Article  CAS  PubMed  Google Scholar 

Smith SJ, Towers N, Demetriou K, Mohun TJ. Defective heart chamber growth and myofibrillogenesis after knockout of adprhl1 gene function by targeted disruption of the ancestral catalytic active site. PLoS ONE. 2020;15(7):e0235433.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu J, Lv Y, Han X, Xu D, Han W. Understanding the differences of the ligand binding/unbinding pathways between phosphorylated and non-phosphorylated ARH1 using molecular dynamics simulations. Sci Rep. 2017;7(1):12439.

Article  PubMed  PubMed Central  Google Scholar 

Oka S, Kato J, Moss J. Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J Biol Chem. 2006;281(2):705–13.

Article  CAS  PubMed  Google Scholar 

Smith SJ, Towers N, Saldanha JW, Shang CA, Mahmood SR, Taylor WR, Mohun TJ. The cardiac-restricted protein ADP-ribosylhydrolase-like 1 is essential for heart chamber outgrowth and acts on muscle actin filament assembly. Devel Biol. 2016;416(2):373–88.

Article  CAS  Google Scholar 

Li T, Chen B, Wei C, Hou D, Qin P, Jing Z, Ma H, Niu X, Wang C, Han R, et al. A 104-bp structural variation of the ADPRHL1 gene is associated with growth traits in chickens. Front Genet. 2021;12: 691272.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Norland K, Sveinbjornsson G, Thorolfsdottir RB, Davidsson OB, Tragante V, Rajamani S, Helgadottir A, Gretarsdottir S, van Setten J, Asselbergs FW, et al. Sequence variants with large effects on cardiac electrophysiology and disease. Nat Commun. 2019;10(1):4803.

Article  PubMed  PubMed Central  Google Scholar 

Xie Y, Wang D, Lan F, Wei G, Ni T, Chai R, Liu D, Hu S, Li M, Li D, et al. An episomal vector-based CRISPR/Cas9 system for highly efficient gene knockout in human pluripotent stem cells. Sci Rep. 2017;7(1):2320.

Article  PubMed  PubMed Central  Google Scholar 

Lian X, Bao X, Zilberter M, Westman M, Fisahn A, Hsiao C, Hazeltine LB, Dunn KK, Kamp TJ, Palecek SP. Chemically defined, albumin-free human cardiomyocyte generation. Nat Methods. 2015;12(7):595–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Isomursu A, Lerche M, Taskinen ME, Ivaska J, Peuhu E. Integrin signaling and mechanotransduction in regulation of somatic stem cells. Exp Cell Res. 2019;378(2):217–25.

Article  CAS  PubMed  Google Scholar 

Xu Y, Zhu X, Hahm HS, Wei W, Hao E, Hayek A, Ding S. Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci USA. 2010;107(18):8129–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geiger B, Boujemaa-Paterski R, Winograd-Katz SE, BalanVenghateri J, Chung WL, Medalia O. The actin network interfacing diverse integrin-mediated adhesions. Biomolecules. 2023;13(2):294.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Wang X. Integrins outside focal adhesions transmit tensions during stable cell adhesion. Sci Rep. 2016;6:36959.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bidone TC, Odde DJ. Multiscale models of integrins and cellular adhesions. Curr Opin Struct Biol. 2023;80:102576.

Article  CAS  PubMed  Google Scholar 

Lu F, Zhu L, Bromberger T, Yang J, Yang Q, Liu J, Plow EF, Moser M, Qin J. Mechanism of integrin activation by talin and its cooperation with kindlin. Nat Commun. 2022;13(1):2362.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leckband DE, le Duc Q, Wang N, de Rooij J. Mechanotransduction at cadherin-mediated adhesions. Curr Opin Cell Biol. 2011;23(5):523–30.

Article  CAS  PubMed  Google Scholar 

Mui KL, Bae YH, Gao L, Liu SL, Xu T, Radice GL, Chen CS, Assoian RK. N-Cadherin induction by ECM stiffness and FAK overrides the spreading requirement for proliferation of vascular smooth muscle cells. Cell Rep. 2015;10(9):1477–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kostetskii I, Li J, Xiong Y, Zhou R, Ferrari VA, Patel VV, Molkentin JD, Radice GL. Induced deletion of the N-cadherin gene in the heart leads to dissolution of the intercalated disc structure. Circul Res. 2005;96(3):346–54.

Article  CAS  Google Scholar 

Bays JL, DeMali KA. Vinculin in cell-cell and cell-matrix adhesions. CMLS. 2017;74(16):2999–3009.

Article  CAS  PubMed  Google Scholar 

Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415(6868):198–205.

Article  CAS  PubMed  Google Scholar 

Julian L, Olson MF. Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions. Small GTPases. 2014;5:e29846.

Article  PubMed  PubMed Central  Google Scholar 

Nakashima Y, Tsukahara M. Laminin-511 Activates the Human Induced Pluripotent Stem Cell Survival via α6β1 Integrin-Fyn-RhoA-ROCK Signaling. Stem Cells Dev. 2022;31(21–22):706–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaneko-Kawano T, Takasu F, Naoki H, Sakumura Y, Ishii S, Ueba T, Eiyama A, Okada A, Kawano Y, Suzuki K. Dynamic regulation of myosin light chain phosphorylation by Rho-kinase. PLoS ONE. 2012;7(6):e39269.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao M, Fan C, Ernst PJ, Tang Y, Zhu H, Mattapally S, Oduk Y, Borovjagin AV, Zhou L, Zhang J, et al. Y-27632 preconditioning enhances transplantation of human-induced pluripotent stem cell-derived cardiomyocytes in myocardial infarction mice. Cardiovasc Res. 2019;115(2):343–56.

Article  CAS  PubMed  Google Scholar 

Park S, Kim D, Jung YG, Roh S. Thiazovivin, a Rho kinase inhibitor, improves stemness maintenance of embryo-derived stem-like cells under chemically defined culture conditions in cattle. Anim Reprod Sci. 2015;161:47–57.

Article  CAS  PubMed  Google Scholar 

Roman BI, Verhasselt S, Stevens CV. Medicinal chemistry and use of myosin II inhibitor (S)-blebbistatin and its derivatives. J Med Chem. 2018;61(21):9410–28.

Article  CAS  PubMed  Google Scholar 

Mattei AM, Smailys JD, Hepworth EMW, Hinton SD. The roles of pseudophosphatases in disease. Int J Mol Sci. 2021;22(13):692.

Article 

留言 (0)

沒有登入
gif