Spill F, Reynolds DS, Kamm RD, Zaman MH. Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol. 2016;40:41–8.
Article CAS PubMed PubMed Central Google Scholar
Eisenberg L, Eisenberg-Bord M, Eisenberg-Lerner A, Sagi-Eisenberg R. Metabolic alterations in the tumor microenvironment and their role in oncogenesis. Cancer Lett. 2020;484:65–71.
Article CAS PubMed Google Scholar
Manzo G. Similarities between embryo development and cancer process suggest new strategies for research and therapy of tumors: a new point of view. Front Cell Develop Biol. 2019;7:20.
Gerstmann K, Pensold D, Symmank J, Khundadze M, Hübner CA, Bolz J, Zimmer G. Thalamic afferents influence cortical progenitors via ephrin A5-EphA4 interactions. Development. 2015;142(1):140–50.
Article CAS PubMed Google Scholar
Steinecke A, Gampe C, Zimmer G, Rudolph J, Bolz J. EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence. Development. 2014;141(2):460–71.
Article CAS PubMed Google Scholar
Zimmer G, Kästner B, Weth F, Bolz J. Multiple effects of ephrin-A5 on cortical neurons are mediated by SRC family kinases. J Neurosci. 2007;27(21):5643–53.
Article CAS PubMed PubMed Central Google Scholar
Zimmer G, Garcez P, Rudolph J, Niehage R, Weth F, Lent R, Bolz J. Ephrin-A5 acts as a repulsive cue for migrating cortical interneurons. Eur J Neurosci. 2008;28(1):62–73.
Zimmer G, Rudolph J, Landmann J, Gerstmann K, Steinecke A, Gampe C, Bolz J. Bidirectional ephrinB3/EphA4 signaling mediates the segregation of medial ganglionic eminence-and preoptic area-derived interneurons in the deep and superficial migratory stream. J Neurosci. 2011;31(50):18364–80.
Article CAS PubMed PubMed Central Google Scholar
Sikkema AH, Den Dunnen WF, Hulleman E, Van Vuurden DG, Garcia-Manero G, Yang H, et al. EphB2 activity plays a pivotal role in pediatric medulloblastoma cell adhesion and invasion. Neuro Oncol. 2012;14(9):1125–35.
Article CAS PubMed PubMed Central Google Scholar
Surawska H, Ma PC, Salgia R. The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev. 2004;15(6):419–33.
Article CAS PubMed Google Scholar
Uddin MS, Al Mamun A, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM, editors. Epigenetics of Glioblastoma Multiforme: From Molecular Mechanisms to Therapeutic Approaches; 2020: Elsevier.
Li J-J, Liu D-P, Liu G, Xie D. EphrinA5 acts as a tumor suppressor in glioma by negative regulation of epidermal growth factor receptor. Oncogene. 2009;28(15):1759–68.
Article CAS PubMed Google Scholar
Ricci B, Millner TO, Pomella N, Zhang X, Guglielmi L, Badodi S, et al. Polycomb-mediated repression of EphrinA5 promotes growth and invasion of glioblastoma. Oncogene. 2020;39(12):2523–38.
Article CAS PubMed PubMed Central Google Scholar
Hamaoka Y, Negishi M, Katoh H. EphA2 is a key effector of the MEK/ERK/RSK pathway regulating glioblastoma cell proliferation. Cell Signal. 2016;28(8):937–45.
Article CAS PubMed Google Scholar
Wykosky J, Debinski W. The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res. 2008;6(12):1795–806.
Article CAS PubMed PubMed Central Google Scholar
Wykosky J, Gibo DM, Stanton C, Debinski W. EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res. 2005;3(10):541–51.
Article CAS PubMed Google Scholar
Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5–18.
Article CAS PubMed Google Scholar
Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–59.
Article CAS PubMed Google Scholar
Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.
Article CAS PubMed Google Scholar
Phillips RE, Soshnev AA, Allis CD. Epigenomic reprogramming as a driver of malignant glioma. Cancer Cell. 2020;38(5):647–60.
Article CAS PubMed PubMed Central Google Scholar
Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, et al. Dynamic changes in the human methylome during differentiation. Genome Res. 2010;20(3):320–31.
Article CAS PubMed PubMed Central Google Scholar
Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, et al. Editing DNA methylation in the mammalian genome. Cell. 2016;167(1):233–47.
Article CAS PubMed PubMed Central Google Scholar
Stepper P, Kungulovski G, Jurkowska RZ, Chandra T, Krueger F, Reinhardt R, et al. Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase. Nucleic Acids Res. 2017;45(4):1703–13.
Article CAS PubMed Google Scholar
Al-Kharashi LA, Al-Mohanna FH, Tulbah A, Aboussekhra A. The DNA methyl-transferase protein DNMT1 enhances tumor-promoting properties of breast stromal fibroblasts. Oncotarget. 2018;9(2):2329.
Gusyatiner O, Hegi ME, editors. Glioma epigenetics: from subclassification to novel treatment options; 2018: Elsevier.
Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet. 2000;24(1):88–91.
Article CAS PubMed Google Scholar
Symmank J, Bayer C, Reichard J, Pensold D, Zimmer-Bensch G. Neuronal Lhx1 expression is regulated by DNMT1-dependent modulation of histone marks. Epigenetics. 2020;15(11):1259–74.
Article PubMed PubMed Central Google Scholar
Guo JU, Ma DK, Mo H, Ball MP, Jang M-H, Bonaguidi MA, et al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci. 2011;14(10):1345–51.
Article CAS PubMed PubMed Central Google Scholar
Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511(7511):606–10.
Article CAS PubMed Google Scholar
Skvortsova K, Stirzaker C, Taberlay P. The DNA methylation landscape in cancer. Essays Biochem. 2019;63(6):797–811.
Article CAS PubMed PubMed Central Google Scholar
Yildiz CB, Zimmer-Bensch G. Role of DNMTs in the Brain. DNA Methyltransferases-Role and Function: Springer; 2022. p. 363–94.
Hua C-D, Bian E-B, Chen E-F, Yang Z-H, Tang F, Wang H-L, Zhao B. Repression of Dok7 expression mediated by DNMT1 promotes glioma cells proliferation. Biomed Pharmacother. 2018;106:678–85.
Article CAS PubMed Google Scholar
Sun J, Tian X, Zhang J, Huang Y, Lin X, Chen L, Zhang S. Regulation of human glioma cell apoptosis and invasion by miR-152-3p through targeting DNMT1 and regulating NF2. J Exp Clin Cancer Res. 2017;36(1):1–13.
Pensold D, Gehrmann J, Pitschelatow G, Walberg A, Braunsteffer K, Reichard J, et al. The Expression of the Cancer-Associated lncRNA Snhg15 Is Modulated by EphrinA5-Induced Signaling. Int J Mol Sci. 2021;22(3):1332.
Article CAS PubMed PubMed Central Google Scholar
Laneve P, Rea J, Caffarelli E. Long noncoding RNAs: emerging players in medulloblastoma. Front Pediatr. 2019;7:67.
Article PubMed PubMed Central Google Scholar
Stackhouse CT, Gillespie GY, Willey CD. Exploring the roles of lncRNAs in GBM pathophysiology and their therapeutic potential. Cells. 2020;9(11):2369.
Article CAS PubMed PubMed Central Google Scholar
Jiang M-C, Ni J-J, Cui W-Y, Wang B-Y, Zhuo W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am J Cancer Res. 2019;9(7):1354.
CAS PubMed PubMed Central Google Scholar
Ghafouri-Fard S, Esmaeili M, Taheri M. H19 lncRNA: roles in tumorigenesis. Biomed Pharmacother. 2020;123: 109774.
Comments (0)