Isoflavone intervention and its impact on bone mineral density in postmenopausal women: a systematic review and meta-analysis of randomized controlled trials

Jeremiah MP, Unwin BK, Greenawald MH, Casiano VE (2015) Diagnosis and management of osteoporosis. Am Fam Physician 92:261–268

PubMed  Google Scholar 

WHO Scientific Group on the Prevention and Management of Osteoporosis (2003) Prevention and management of osteoporosis: report of a WHO scientific group. World Health Organization

Google Scholar 

Boschitsch EP, Durchschlag E, Dimai HP (2017) Age-related prevalence of osteoporosis and fragility fractures: real-world data from an Austrian Menopause and Osteoporosis Clinic. Climacteric J Int Menopause Soc 20:157–163. https://doi.org/10.1080/13697137.2017.1282452

Article  CAS  Google Scholar 

Cheng C-H, Chen L-R, Chen K-H (2022) Osteoporosis due to hormone imbalance: An overview of the effects of estrogen deficiency and glucocorticoid overuse on bone turnover. Int J Mol Sci 23:1376. https://doi.org/10.3390/ijms23031376

Article  CAS  PubMed  PubMed Central  Google Scholar 

Center JR, Nguyen TV, Schneider D et al (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet Lond Engl 353:878–882. https://doi.org/10.1016/S0140-6736(98)09075-8

Article  CAS  Google Scholar 

Feldstein A, Elmer PJ, Orwoll E et al (2003) Bone mineral density measurement and treatment for osteoporosis in older individuals with fractures: a gap in evidence-based practice guideline implementation. Arch Intern Med 163:2165–2172. https://doi.org/10.1001/archinte.163.18.2165

Article  PubMed  Google Scholar 

Rondanelli M, Faliva MA, Barrile GC et al (2021) Nutrition, physical activity, and dietary supplementation to prevent bone mineral density loss: A food pyramid. Nutrients 14:74. https://doi.org/10.3390/nu14010074

Article  CAS  PubMed  PubMed Central  Google Scholar 

Body J-J, Bergmann P, Boonen S et al (2011) Non-pharmacological management of osteoporosis: a consensus of the Belgian Bone Club. Osteoporos Int 22:2769–2788. https://doi.org/10.1007/s00198-011-1545-x

Article  PubMed  PubMed Central  Google Scholar 

Reginster JY, Neuprez A, Beaudart C et al (2014) Antiresorptive drugs beyond bisphosphonates and selective oestrogen receptor modulators for the management of postmenopausal osteoporosis. Drugs Aging 31:413–424. https://doi.org/10.1007/s40266-014-0179-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tu KN, Lie JD, Wan CKV et al (2018) Osteoporosis: A review of treatment options. Pharm Ther 43:92–104

Google Scholar 

Cosman F (2014) Anabolic and antiresorptive therapy for osteoporosis: Combination and sequential approaches. Curr Osteoporos Rep 12:385–395. https://doi.org/10.1007/s11914-014-0237-9

Article  PubMed  Google Scholar 

Chen JS, Sambrook PN (2012) Antiresorptive therapies for osteoporosis: a clinical overview. Nat Rev Endocrinol 8:81–91. https://doi.org/10.1038/nrendo.2011.146

Article  CAS  Google Scholar 

Levin VA, Jiang X, Kagan R (2018) Estrogen therapy for osteoporosis in the modern era. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 29:1049–1055. https://doi.org/10.1007/s00198-018-4414-z

Article  CAS  Google Scholar 

Marjoribanks J, Farquhar C, Roberts H et al (2017) Long-term hormone therapy for perimenopausal and postmenopausal women. Cochrane Database Syst Rev 2017:CD004143. https://doi.org/10.1002/14651858.CD004143.pub5

Article  PubMed Central  Google Scholar 

Wu L, Ling Z, Feng X et al (2017) Herb medicines against osteoporosis: Active compounds & relevant biological mechanisms. Curr Top Med Chem 17:1670–1691. https://doi.org/10.2174/1568026617666161116141033

Article  CAS  PubMed  Google Scholar 

Geller SE, Studee L (2006) Soy and red clover for mid-life and aging. Climacteric 9:245–263. https://doi.org/10.1080/13697130600736934

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barańska A, Kanadys W, Bogdan M, et al (2022) The role of soy isoflavones in the prevention of bone loss in postmenopausal women: A systematic review with meta-analysis of randomized controlled trials. J Clin Med 11. https://doi.org/10.3390/jcm11164676

Kanadys W, Barańska A, Błaszczuk A et al (2021) Effects of soy isoflavones on biochemical markers of bone metabolism in postmenopausal women: A systematic review and meta-analysis of randomized controlled trials. Int J Environ Res Public Health 18:5346. https://doi.org/10.3390/ijerph18105346

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harahap IA, Suliburska J (2022) An overview of dietary isoflavones on bone health: The association between calcium bioavailability and gut microbiota modulation. Mater Today Proc 63:S368–S372. https://doi.org/10.1016/j.matpr.2022.03.549

Article  CAS  Google Scholar 

Wong WW, Lewis RD, Steinberg FM et al (2009) Soy isoflavone supplementation and bone mineral density in menopausal women: a 2-y multicenter clinical trial. Am J Clin Nutr 90:1433–1439. https://doi.org/10.3945/ajcn.2009.28001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye Y-B, Tang X-Y, Verbruggen MA, Su Y-X (2006) Soy isoflavones attenuate bone loss in early postmenopausal Chinese women. Eur J Nutr 45:327–334. https://doi.org/10.1007/s00394-006-0602-2

Article  CAS  PubMed  Google Scholar 

Arcoraci V, Atteritano M, Squadrito F et al (2017) Antiosteoporotic activity of genistein aglycone in postmenopausal women: Evidence from a post-hoc analysis of a multicenter randomized controlled trial. Nutrients 9:179. https://doi.org/10.3390/nu9020179

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moher D, Shamseer L, Clarke M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4:1. https://doi.org/10.1186/2046-4053-4-1

Article  PubMed  PubMed Central  Google Scholar 

Rohatgi A (2022) Web based tool to extract data from plots, images, and maps. WebPlotDigitizer: Version 4.6. Pacifica, California, USA. https://automeris.io/WebPlotDigitizer

Sterne JAC, Savović J, Page MJ et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898. https://doi.org/10.1136/bmj.14898

Article  PubMed  Google Scholar 

Schünemann HJ, Higgins JPT, Vist GE, Glasziou P, Akl EA, Skoetz N, Guyatt GH (2019) Cochrane Handbook for Systematic Reviews of Interventions. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds) Completing ‘Summary of findings’ tables and grading the certainty of the evidence, 2nd edn. Wiley, Chichester, pp 375–402

Google Scholar 

Deeks JJ, Higgins JPT, Altman D (2019) Cochrane Handbook for Systematic Reviews ofInterventions. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds) Analysing data and undertaking meta-analyses, 2nd edn. Wiley, Chichester, pp 241–284

Google Scholar 

Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634. https://doi.org/10.1136/bmj.315.7109.629

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135. https://doi.org/10.1186/1471-2288-14-135

Article  PubMed  PubMed Central  Google Scholar 

Higgins JPT, Li T, Deeks JJ (2019) Cochrane Handbook for Systematic Reviews of Interventions. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds) Choosing effect measures and computing estimates of effect, 2nd edn. Wiley, Chichester, pp 143–176

Google Scholar 

Agnusdei D, Adami S, Cervetti R et al (1992) Effects of ipriflavone on bone mass and calcium metabolism in postmenopausal osteoporosis. Bone Miner 19(Suppl 1):S43-48. https://doi.org/10.1016/0169-6009(92)90865-b

Article  PubMed  Google Scholar 

Melis GB, Paoletti AM, Bartolini R et al (1992) Ipriflavone and low doses of estrogens in the prevention of bone mineral loss in climacterium. Bone Miner 19:S49–S56. https://doi.org/10.1016/0169-6009(92)90866-C

Article  CAS  PubMed  Google Scholar 

Passeri M, Biondi M, Costi D et al (1992) Effect of ipriflavone on bone mass in elderly osteoporotic women. Bone Miner 19(Suppl 1):S57-62. https://doi.org/10.1016/0169-6009(92)90867-d

Article  PubMed  Google Scholar 

Kovács AB (1994) Efficacy of ipriflavone in the prevention and treatment of postmenopausal osteoporosis. Agents Actions 41:86–87. https://doi.org/10.1007/BF01986400

Article  PubMed  Google Scholar 

Maugeri D, Panebianco P, Russo MS et al (1994) Ipriflavone-treatment of senile osteoporosis: results of a multicenter, double-blind clinical trial of 2 years. Arch Gerontol Geriatr 19:253–263. https://doi.org/10.1016/0167-4943(94)00571-0

Article  CAS  PubMed  Google Scholar 

Valente M, Bufalino L, Castiglione GN et al (1994) Effects of 1-year treatment with ipriflavone on bone in postmenopausal women with low bone mass. Calcif Tissue Int 54:377–380. https://doi.org/10.1007/BF00305522

Article  CAS  PubMed  Google Scholar 

Agnusdei D, Gennari C, Bufalino L (1995) Prevention of early postmenopausal bone loss using low doses of conjugated estrogens and the non-hormonal, bone-active drug ipriflavone. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 5:462–466. https://doi.org/10.1007/BF01626609

Article  CAS  Google Scholar 

Ushiroyama T, Okamura S, Ikeda A, Ueki M (1995) Efficacy of ipriflavone and 1α vitamin D therapy for the cessation of vertebral bone loss. Int J Gynecol Obstet 48:283–288. https://doi.org/10.1016/0020-7292(94)02280-C

Article  CAS  Google Scholar 

Melis GB, Paoletti AM, Cagnacci A (1996) Ipriflavone prevents bone loss in postmenopausal women. Menopause 3:27

留言 (0)

沒有登入
gif