Griffin XL, Parsons N, Achten J et al (2015) Recovery of health-related quality of life in a United Kingdom hip fracture population. Bone Jt J (97-B):372–382
Haleem S, Lutchman L, Mayahi R et al (2008) Mortality following hip fracture: trends and geographical variations over the last 40 years. Injury 39:1157–1163
Article CAS PubMed Google Scholar
Rapp K, Büchele G, Dreinhöfer K et al (2019) Epidemiology of hip fractures. Z Für Gerontol Geriatr 52:10–16
Liu Z, Zhang J, He K et al (2019) Optimized clinical practice for superaged patients with hip fracture: significance of damage control and enhanced recovery program. Burns Trauma 7:21
Article PubMed PubMed Central Google Scholar
Kannus P, Parkkari J, Sievänen H et al (1996) Epidemiology of hip fractures. Bone 18:S57–S63
Parker MJ, Palmer CR (1993) A new mobility score for predicting mortality after hip fracture. J Bone Joint Surg Br 75:797–798
Article CAS PubMed Google Scholar
Smith T, Pelpola K, Ball M et al (2014) Pre-operative indicators for mortality following hip fracture surgery: a systematic review and meta-analysis. Age Ageing 43:464–471
Chang W, Lv H, Feng C et al (2018) Preventable risk factors of mortality after hip fracture surgery: systematic review and meta-analysis. Int J Surg 52:320–328
Hu F, Jiang C, Shen J et al (2012) Preoperative predictors for mortality following hip fracture surgery: a systematic review and meta-analysis. Injury 43:676–685
Federatie Medisch Specialisten (2019) Richtlijn behandeling kwetsbare ouderen met een proximale femurfractuur. https://richtlijnendatabase.nl/richtlijn/behandeling_kwetsbare_ouderen_bij_chirurgie/generieke_zorgpad.html. Accessed 19 Oct 2023
Loggers SAI, Willems HC, Van Balen R et al (2022) Evaluation of quality of life after nonoperative or operative management of proximal femoral fractures in frail institutionalized patients: the FRAIL-HIP study. JAMA Surg. https://doi.org/10.1001/jamasurg.2022.0089
Stacey D, Légaré F, Lewis K et al (2017) Decision aids for people facing health treatment or screening decisions. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD001431.pub5
Joosten EA, Defuentes-Merillas L, De Weert GH et al (2008) Systematic review of the effects of shared decision-making on patient satisfaction, treatment adherence and health status. Psychother Psychosom 77:219–226
Article CAS PubMed Google Scholar
Stiggelbout AM, der Weijden TV, Wit MPTD et al (2012) Shared decision making: really putting patients at the centre of healthcare. BMJ 344:e256
Article CAS PubMed Google Scholar
Haidich AB (2010) Meta-analysis in medical research. Hippokratia 14:29–37
CAS PubMed PubMed Central Google Scholar
Foroutan F, Guyatt G, Zuk V et al (2020) GRADE Guidelines 28: use of GRADE for the assessment of evidence about prognostic factors: rating certainty in identification of groups of patients with different absolute risks. J Clin Epidemiol 121:62–70
Iorio A, Spencer FA, Falavigna M et al (2015) Use of GRADE for assessment of evidence about prognosis: rating confidence in estimates of event rates in broad categories of patients. BMJ 350:h870–h870
Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71
Article PubMed PubMed Central Google Scholar
Hayden JA, van der Windt DA, Cartwright JL et al (2013) Assessing bias in studies of prognostic factors. Ann Intern Med 158:280–286
Huguet A, Hayden JA, Stinson J et al (2013) Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. Syst Rev 2:71
Article PubMed PubMed Central Google Scholar
DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188
Article CAS PubMed Google Scholar
Borenstein M, Hedges LV, Higgins JPT et al (2009) Introduction to meta-analysis, 1st edn. John Wiley & Sons, Ltd
Borenstein M, Hedges LV, Higgins JPT et al (2010) A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods 1:97–111
Higgins JPT, Thompson SG, Spiegelhalter DJ (2009) A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc 172:137–159
Article PubMed PubMed Central Google Scholar
Duval S, Tweedie R (2000) A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J Am Stat Assoc 95:89–98
Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463
Article CAS PubMed Google Scholar
Knapp G, Hartung J (2003) Improved tests for a random effects meta-regression with a single covariate. Stat Med 22:2693–2710
Harrer M, Cuijpers P et al (2021) Doing meta-analysis with R: a hands-on guide, 1st edn. Chapman & Hall/CRC Press, Boca Raton, FL and London
Turner RM, Davey J, Clarke MJ et al (2012) Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. Int J Epidemiol 41:818–827
Article PubMed PubMed Central Google Scholar
Rhodes KM, Turner RM, Higgins JPT (2015) Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data. J Clin Epidemiol 68:52–60
Article PubMed PubMed Central Google Scholar
Röver C, Knapp G, Friede T (2015) Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies. BMC Med Res Methodol 15:99
Article PubMed PubMed Central Google Scholar
Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:1–48
Bürkner P-C (2017) brms: an R package for Bayesian multilevel models using Stan. J Stat Softw 80:1–28
McGuinness LA, Higgins JPT (2021) Risk-of-bias visualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods 12:55–61
Jiang HX, Majumdar SR, Dick DA et al (2005) Development and initial validation of a risk score for predicting in-hospital and 1-year mortality in patients with hip fractures. J Bone Miner Res 20:494–500
Article CAS PubMed Google Scholar
Myers AH, Robinson EG, Natta MLV et al (1991) Hip fractures among the elderly: factors associated with in-hospital mortality. Am J Epidemiol 134:1128–1137
Article CAS PubMed Google Scholar
Pioli G, Barone A, Giusti A et al (2006) Predictors of mortality after hip fracture: results from 1-year follow-up. Aging Clin Exp Res 18:381–387
Article CAS PubMed Google Scholar
Franzo A, Francescutti C, Simon G (2005) Risk factors correlated with post-operative mortality for hip fracture surgery in the elderly: a population-based approach. Eur J Epidemiol 20:985–991
Padrón-Monedero A, López-Cuadrado T, Galán I et al (2017) Effect of comorbidities on the association between age and hospital mortality after fall-related hip fracture in elderly patients. Osteoporos Int 28:1559–1568
Würdemann FS, Wilschut JA, Hegeman JH (2021) Eindverslag SKMS Project Doorontwikkeling DHFA. Dutch Institute for Clinical Auditing
Fisher A, Fisher L, Srikusalanukul W et al (2018) Usefulness of simple biomarkers at admission as independent indicators and predictors of in-hospital mortality in older hip fracture patients. Injury 49:829–840
Ribeiro TA, Premaor MO, Larangeira JA et al (2014) Predictors of hip fracture mortality at a general hospital in South Brazil: an unacceptable surgical delay. Clinics 69:253–258
Article PubMed PubMed Central Google Scholar
Tal S, Gurevich A, Sagiv S et al (2016) Predictors of mortality in hip fracture patients. Eur Geriatr Med 7:561–565
Thorne G, Hodgson L (2021) Performance of the Nottingham Hip Fracture Score and Clinical Frailty Scale as predictors of short and long-term outcomes: a dual-centre 3-year observational study of hip fracture patients. J Bone Miner Metab 39:494–500
Eschbach D-A, Oberkircher L, Bliemel C et al (2013) Increased age is not associated with higher incidence of complications, longer stay in acute care hospital and in hospital mortality in geriatric hip fracture patients. Maturitas 74:185–189
Comments (0)