Urbanization and Water Containers Influence the Mosquito Community with Consequences for Aedes aegypti

Adhikari K, Khanikor B, Sarma R (2022) Persistent susceptibility of Aedes aegypti to eugenol. Sci Rep 12:2277. https://doi.org/10.1038/s41598-022-06302-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmad D, Sumra MW, Shah RM, Alam M, Shad SA, Naeem-Ullah U, Binyameen M (2022) Effects of interspecific competition between Aedes aegypti and Culex quinquefasciatus on their life history traits. Int J Trop Insect Sci 42:629–635. https://doi.org/10.1007/s42690-021-00582-9

Article  Google Scholar 

Alford RA, Wilbur HM (1985) Priority effects in experimental pond communities: competition between Bufo and Rana. Ecology 66:1097–1105. https://doi.org/10.2307/1939161

Article  Google Scholar 

Barrera B (2022) New tools for Aedes control: mass trapping. Curr Opin Insect Sci 52:100942. https://doi.org/10.1016/j.cois.2022.100942

Article  PubMed  PubMed Central  Google Scholar 

Bastos AQ, Leite PJ, de Mello CF, Maia DA, Machado SL, Gil-Santana HR et al (2021) Bionomy of mosquitoes in bamboo internodes in an Atlantic forest remnant of the state of Rio De Janeiro, Brazil. J Am Mosq Control Assoc 37:208–215. https://doi.org/10.2987/21-7044

Article  PubMed  Google Scholar 

Bennett KL, Martínez CG, Almanza A, Rovira JR, McMillan WO, Enriquez V et al (2019) High infestation of invasive Aedes mosquitoes in used tires along the local transport network of Panama. Parasit Vectors 12:264. https://doi.org/10.1186/s13071-019-3522-8

Article  PubMed  PubMed Central  Google Scholar 

Bhattacharya S, Basu P (2016) The Southern house mosquito, Culex quinquefasciatus: profile of a smart vector. J Entomol Zool Stud 4:73–81

Google Scholar 

Blaustein L, Chase JM (2007) Interactions between mosquito larvae and species that share the same trophic level. Annu Rev Entomol 52:489–507. https://doi.org/10.1146/annurev.ento.52.110405.091431

Article  CAS  PubMed  Google Scholar 

Boullis A, Mulatier M, Delannay C, Hery L, Verheggen JF, Vega-Rúa A (2021) Behavioural and antennal responses of Aedes aegypti (L.) (Diptera: Culicidae) gravid females to chemical cues from conspecific larvae. PLoS ONE 16:e0247657. https://doi.org/10.1371/journal.pone.0247657

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ceretti-Júnior W, Medeiros-Sousa AR, Multini LC, Urbinatti PR, Vendrami DP, Natal D et al (2014) Immature mosquitoes in bamboo internodes in municipal parks, city of São Paulo, Brazil. J Am Mosq Control Assoc 30:268–274. https://doi.org/10.2987/14-6403R.1

Article  PubMed  Google Scholar 

Chen J, Luoa J, Wanga Y, Gurava AS, Lic M, Akbaric OS, Montell C (2021) Suppression of female fertility in Aedes aegypti with a CRISPR-targeted male-sterile mutation. PNAS 118:e2105075118. https://doi.org/10.1073/pnas.2105075118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Couper LI, Farner JE, Caldwell JM, Childs ML, Harris MJ, Kirk DG et al (2021) How will mosquitoes adapt to climate warming? eLife 10:e69630. https://doi.org/10.7554/eLife.69630

Article  CAS  PubMed  PubMed Central  Google Scholar 

da Silva RM, Vital WO, da Fonseca RN, Martins YPM, Lemos FJA, da Silva Vaz Jr I et al (2019) Hypometabolic strategy and glucose metabolism maintenance of Aedes aegypti egg desiccation. Comp Biochem Physiol B Biochem Mol Biol 227:56–63. https://doi.org/10.1016/j.cbpb.2018.09.005

Article  CAS  PubMed  Google Scholar 

Diamond SE, Martin RA (2021) Evolution in cities. Annu Rev Ecol Evol Syst 52:519–540. https://doi.org/10.1146/annurev-ecolsys-012021-021402

Article  Google Scholar 

Flaibani N, Pérez AA, Barbero IM, Burroni NE (2020) Different approaches to characterize artificial breeding sites of Aedes aegypti using generalized linear mixed models. Infect Dis Poverty 9:107. https://doi.org/10.1186/s40249-020-00705-3

Article  PubMed  PubMed Central  Google Scholar 

Focks D (2007) Toxorhynchites as biocontrol agent. J Am Mosq Control Assoc 33:118–127. https://doi.org/10.3390/insects11110747

Article  Google Scholar 

Honório NA, Silva WDC, Leite PJ, Gonçalves JM, Lounibos LP, Lourenço-de-Oliveira R (2003) Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem Instit Oswaldo Cruz 98:191–198. https://doi.org/10.1590/s0074-02762003000200005

Article  Google Scholar 

Juliano SA (2009) Species interactions among larval mosquitoes: context dependence across habitat gradients. Annu Rev Entomol 54:37–56. https://doi.org/10.1146/annurev.ento.54.110807.090611

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kolimenakis A, Heinz S, Wilson ML, Winkler V, Yakob L, Michaelakis A et al (2021) The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit - A systematic review. PLoS Negl Trop Dis 15:e0009631. https://doi.org/10.1371/journal.pntd.0009631

Article  PubMed  PubMed Central  Google Scholar 

Lahondère C, Bonizzoni M (2022) Thermal biology of invasive Aedes mosquitoes in the context of climate change. Curr Opin Insect Sci 51:100920. https://doi.org/10.1016/j.cois.2022.100920

Article  PubMed  Google Scholar 

Lane J (1953) Neotropical Culicidae. Vol. I and II. Universidade de São Paulo, São Paulo, p 1112

Google Scholar 

Lopez LC, Silva EG, Beltrão MG, Leandro RS, Barbosa JE, Beserra EB (2011) Effect of tank bromeliad micro-environment on Aedes aegypti larval mortality. Hydrobiologia 665:257–261. https://doi.org/10.1007/s10750-011-0605-8

Article  CAS  Google Scholar 

Lounibos LP (2007) Competitive displacement and reduction. J Am Mosq Control Assoc 23:276–282. https://doi.org/10.2987/8756-971x(2007)23[276:cdar]2.0.co;2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maneerat S, Daudé E (2016) A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas. Ecol Model 333:66–78. https://doi.org/10.1016/j.ecolmodel.2016.04.012

Article  Google Scholar 

Martín-Park A, Che-Mendoza A, Contreras-Perera Y, Pérez-Carrillo S, Puerta-Guardo H, Villegas-Chim J et al (2022) Pilot trial using mass field-releases of sterile males produced with the incompatible and sterile insect techniques as part of integrated Aedes aegypti control in Mexico. PLoS Negl Trop Dis 16:e0010324. https://doi.org/10.1371/journal.pntd.0010324

Article  PubMed  PubMed Central  Google Scholar 

Mocellin MG, Simões TC, do Nascimento TFS, Teixeira MLF, Lounibos LP, Lourenço de Oliveira R (2009) Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus? Mem Inst Oswaldo Cruz 104:1171–1176. https://doi.org/10.1590/s0074-02762009000800015

Article  PubMed  Google Scholar 

Mohajerani A, Bakaric J, Jeffrey-Bailey T (2017) The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J Environ Manag 197:522–538. https://doi.org/10.1016/j.jenvman.2017.03.095

Article  Google Scholar 

Mulatier M, Boullis A, Vega-Rúa A (2022) Semiochemical oviposition cues to control Aedes aegypti gravid females: state of the art and proposed framework for their validation. Parasit Vectors 15:228. https://doi.org/10.1186/s13071-022-05337-0

Article  PubMed  PubMed Central  Google Scholar 

Müller GA, de Mello CF, Bueno AS, de AlcantaraAzevedo WT, Alencar J (2022) Little noticed, but very important: the role of breeding sites formed by bamboo in maintaining the diversity of mosquitoes (Diptera: Culicidae) in the Atlantic Forest biome. PLoS ONE 17:e0273774. https://doi.org/10.1371/journal.pone.0273774

Article  CAS  PubMed  PubMed Central  Google Scholar 

Powell J, Gloria-Soria A, Kotsakiozi P (2018) Recent history of Aedes aegypti: vector genomics and epidemiology records. Bioscience 68:854–860. https://doi.org/10.1093/biosci/biy119

Article  PubMed  PubMed Central  Google Scholar 

R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

Google Scholar 

Reinhold JM, Lazzari CR, Lahondère C (2018) Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: a review. Insects 9:158. https://doi.org/10.3390/insects9040158

Article  PubMed  PubMed Central  Google Scholar 

Riback TIS, Honório NA, Pereira RN, Godoy WAC, Codeço CT (2015) Better to be in bad company than to be alone? Aedes vectors respond differently to breeding site quality in the presence of others. PLoS ONE 10:e0134450. https://doi.org/10.1371/journal.pone.0134450

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roiz D, Wilson AL, Scott TW, Fonseca DM, Jourdain F, Müller P et al (2018) Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl Trop Dis 12:e0006845. https://doi.org/10.1371/journal.pntd.0006845

Article  PubMed  PubMed Central  Google Scholar 

Rose NH, Sylla M, Badolo A, Crawford JE, McBride CS, Lutomiah J et al (2020) Climate and urbanization drive mosquito preference for humans. Curr Biol 30:3570–3579. https://doi.org/10.1016/j.cub.2020.06.092

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rose NH, Badolo A, Sylla M, Akorli J, Otoo S, Gloria-Soria A et al (2023) Dating the origin and spread of specialization on human hosts in Aedes aegypti mosquitoes. ELife 12:e83524.

留言 (0)

沒有登入
gif