Predator–Prey Interaction Between Xylocoris sordidus (Hemiptera: Anthocoridae) and Enneothrips enigmaticus (Thysanoptera: Thripidae)

Albashir A., Aljetlawi Erik, Sparrevik Kjell, Leonardsson (2004) Prey–predator size‐dependent functional response: derivation and rescaling to the real world. J Anim Ecol 73(2):239–252. https://doi.org/10.1111/jae.2004.73.issue-2https://doi.org/10.1111/j.0021-8790.2004.00800.x

Almeida PRD, Arruda HVD (1962) Controle do tripes causador do prateamento das fôlhas do amendoim, por meio de inseticidas. Bragantia 21:679–687. https://doi.org/10.1590/S0006-87051962000100039

Article  Google Scholar 

Andow DA, Barratt BI, Pfannenstiel RS, Paula DP (2021) Exotic generalist arthropod biological control agents: need to improve environmental risk assessment to ensure safe use. Biol Control 66:1–8. https://doi.org/10.1007/s10526-020-10067-2

Article  Google Scholar 

Arbogast RT, Flaherty BR, Press JW (1983) Demography of the predaceous bug Xylocoris sordidus (Reuter). Am Midl Nat 109:398–405. https://doi.org/10.2307/2425421

Article  Google Scholar 

Arnó J, Roig J, Riudavets J (2008) Evaluation of Orius majusculus and O. laevigatus as predators of Bemisa tabaci and estimation of their prey preference. Biol Control 44:1–6. https://doi.org/10.1016/j.biocontrol.2007.10.009

Article  Google Scholar 

Atakan E (2006) Associations between Frankliniella spp. and Orius niger populations in cotton. Phytoparasitica 34:221–234. https://doi.org/10.1007/BF02980949

Article  Google Scholar 

Atakan E, Pehlivan S (2020) Influence of weed management on the abundance of thrips species (Thysanoptera) and the predatory bug, Orius niger (Hemiptera: Anthocoridae) in citrus mandarin. Appl Entomol Zool 55:71–81. https://doi.org/10.1007/s13355-019-00655-9

Article  Google Scholar 

Baez I, Reitz SR, Funderburk JE (2004) Predation by Orius insidiosus (Heteroptera: Anthocoridae) on life stages and species of Frankliniella flower thrips (Thysanoptera: Thripidae) in pepper flowers. Environ Entomol 33:662–670. https://doi.org/10.1603/0046-225X-33.3.662

Article  Google Scholar 

Baker BP, Green TA, Loker AJ (2020) Biological control and integrated pest management in organic and conventional systems. Biol Control 140:104095. https://doi.org/10.1016/j.biocontrol.2019.104095

Article  Google Scholar 

Ballal CR, Yamada K (2016) Anthocorid predators. In: Omkar (Ed) Ecofriendly pest management for food security, 1st edn. Elsevier, New York, pp 183–216

Barzman M, Bàrberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Sattin M (2015) Eight principles of integrated pest management. Agron Sustain Dev 35:1199–1215. https://doi.org/10.1007/s13593-015-0327-9

Article  Google Scholar 

Calore RA, Ferreira MC, Galli JC (2015) Efeitos de adjuvantes no controle de Enneothrips flavens Moulton, 1941 (Thysanoptera: Thripidae) na cultura do amendoim. Bras Cienc Agrar 10:74–81. https://doi.org/10.5039/agraria.v10i1a5043

Article  Google Scholar 

Clercq PD (2002) Dark clouds and their silver linings: exotic generalist predators in augmentative biological control. Neotrop Entomol 31:169–176. https://doi.org/10.1590/S1519-566X2002000200001

Article  Google Scholar 

Dawes JHP, Souza M (2013) A derivation of Holling’s type I, II and III functional responses in predator–prey systems. J Theor Biol 327:11–22. https://doi.org/10.1016/j.jtbi.2013.02.017

Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

Deguine JP, Aubertot JN, Flor RJ, Lescourret F, Wyckhuys KA, Ratnadass A (2021) Integrated pest management: good intentions, hard realities. A Review Agron Sustain Dev 41:38. https://doi.org/10.1007/s13593-021-00689-w

Article  Google Scholar 

Di Stefano J (2005) Effect size estimates and confidence intervals: an alternative focus for the presentation and interpretation of ecological data. In: Burk AR (ed) New Trends in ecology research. Nova Science, New York, pp 71–102

Google Scholar 

Diehl E, Sereda E, Wolters V, Birkhofer K (2013) Effects of predator specialization, host plant and climate on biological control of aphids by natural enemies: a meta-analysis. J Appl Ecol 50:262–270. https://doi.org/10.1111/1365-2664.12032

Article  Google Scholar 

Doğramaci M, Arthurs SP, Chen J, McKenzie C, Irrizary F, Osborne L (2011) Management of chilli thrips Scirtothrips dorsalis (Thysanoptera: Thripidae) on peppers by Amblyseius swirskii (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae). Biol Control 59:340–347. https://doi.org/10.1016/j.biocontrol.2011.09.008

Article  Google Scholar 

Donnelly BE, Phillips TW (2001) Functional response of Xylocoris flavipes (Hemiptera: Anthocoridae)-effects of prey species and habitat. Environ Entomol 30:617–624. https://doi.org/10.1603/0046-225X-30.3.617

Article  Google Scholar 

Farinelli JBM, Horita K, Santos DFL (2018) Analysis of the economic viability of the peanut crop in the region of Jaboticabal, São Paulo. Científica 46:215–220. https://doi.org/10.15361/1984-5529.2018v46n3p215-220

Article  Google Scholar 

Fernandes OA, Michelotto MD (2022) Pragas do amendoim. In: Rada A et al (eds) Manual de entomologia: pragas das culturas, 1st edn. Ouro fino, MG, Agronômica Ceres, pp 41–56

Google Scholar 

Ge Y, Camara I, Wang Y, Liu P, Zhang L, Xing Y, Shi W (2018) Predation of Aphis craccivora (Hemiptera: Aphididae) by Orius sauteri (Hemiptera: Anthocoridae) under different temperatures. J Econ Entomol 111:2599–2604. https://doi.org/10.1093/jee/toy255

Article  PubMed  Google Scholar 

Gitonga LM, Overholt WA, Löhr B, Magambo JK, Mueke JM (2002) Functional response of Orius albidipennis (Hemiptera: Anthocoridae) to Megalurothrips sjostedti (Thysanoptera: Thripidae). Biol Control 24:1–6. https://doi.org/10.1016/S1049-9644(02)00001-4

Article  Google Scholar 

Hassanzadeh-Avval M, Sadeghi-Namaghi H, Fekrat L (2019) Factors influencing functional response, handling time and searching efficiency of Anthocoris minki Dohrn (Hem.: Anthocoridae) as predator of Psyllopsis repens Loginova (Hem.: Psyllidae). Phytoparasitica 47:341–350. https://doi.org/10.1007/s12600-019-00739-w

Article  Google Scholar 

Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398. https://doi.org/10.4039/Ent91385-7

Article  Google Scholar 

Holling CS (1966) The functional response of invertebrate predators to prey density. Mem Entomol Soc Can 98:5–86. https://doi.org/10.4039/entm9848fv

Article  Google Scholar 

Juliano SA (2001) Non-linear curve fitting: predation and functional response curves. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments, 2nd edn. Chapman & Hall, New York, pp 178–196

Chapter  Google Scholar 

Kheirodin A, Simmons AM, Legaspi JC, Grabarczyk EE, Toews MD, Roberts PM, Schmidt JM (2020) Can generalist predators control Bemisia tabaci? Insects 11:823. https://doi.org/10.3390/insects11110823

Article  PubMed  PubMed Central  Google Scholar 

Koss AM, Snyder WE (2005) Alternative prey disrupt biocontrol by a guild of generalist predators. Biol Control 32(2):243–251. https://doi.org/10.1016/j.biocontrol.2004.10.002

Article  Google Scholar 

Krey KL, Blubaugh CK, Chapman EG, Lynch CA, Snyder GB, Jensen AS, Snyder WE (2017) Generalist predators consume spider mites despite the presence of alternative prey. Biol Control 115:157–164. https://doi.org/10.1007/BF02371908

Article  Google Scholar 

LeCato GL (1976) Predation by Xylocoris flavipes [Hem.: Anthocoridae]: Influence of stage, species and density of prey and of starvation and density of predator. Entomophaga 21:217–221. https://doi.org/10.1007/BF02371908

Article  Google Scholar 

Lima ÉFB, Alencar ÁRSD, Nanini F, Michelotto MD, Corrêa AS (2022) “Unmasking the Villain”: integrative taxonomy reveals the real identity of the key pest (Thysanoptera: Thripidae) of peanuts (Arachis hypogaea L.) in South America. Insects 13:120. https://doi.org/10.3390/insects13020120

Article  PubMed  PubMed Central  Google Scholar 

Lin T, Zeng Z, Chen Y, You Y, Hu J, Yang F, Wei H (2021) Compatibility of six reduced-risk insecticides with Orius strigicollis (Heteroptera: Anthocoridae) predators for controlling Thrips hawaiiensis (Thysanoptera: Thripidae) pests. Ecotoxicol Environ Saf 226:112812. https://doi.org/10.1016/j.ecoenv.2021.112812

Article  CAS  PubMed  Google Scholar 

Liu P, Jia W, Zheng X, Zhang L, Sangbaramou R, Tan S, Shi W (2018) Predation functional response and life table parameters of Orius sauteri (Hemiptera: Anthocoridae) feeding on Megalurothrips usitatus (Thysanoptera: Thripidae). Fla Entomol 101:254–259. https://doi.org/10.1653/024.101.0216

Article  Google Scholar 

Loomans AJ (2021) Every generalist biological control agent requires a special risk assessment. Biocontrol 66:23–35. https://doi.org/10.1007/s10526-020-10022-1

Article  Google Scholar 

Messelink GJ, Janssen A (2014) Increased control of thrips and aphids in greenhouses with two species of generalist predatory bugs involved in intraguild predation. Biol Control 79:1–7. https://doi.org/10.1016/j.biocontrol.2014.07.009

Article  Google Scholar 

Michelotto MD, De Godoy IJ, Pirotta MZ, Santos JF, Finoto EL, Pereira Fávero A (2017) Resistance to thrips (Enneothrips flavens) in wild and amphidiploid Arachis species. PLoS ONE 12:e0176811. https://doi.org/10.1371/journal.pone.0176811

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miranda MMM, Picanço MC, Zanuncio JC, Guedes RNC (1998) Ecological life table of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Biocontrol Sci Technol 8:597–606. https://doi.org/10.1080/09583159830117

Article  Google Scholar 

Moraes ARAD, Lourenção AL, Godoy IJD, Teixeira GDC (2005) Infestation by Enneothrips flavens Moulton and yield of peanut cultivars. Sci Agric 62:469–472. https://doi.org/10.1590/S0103-90162005000500010

Article  Google Scholar 

Naranjo SE, Ellsworth PC, Frisvold GB (2015) Economic value of biological control in integrated pest management of managed plant systems. Annu Rev Entomol 60:621–645. https://doi.org/10.1146/annurev-ento-010814-021005

Article  CAS  PubMed  Google Scholar 

Peñalver-Cruz A, Alvarez-Baca JK, Alfaro-Tapia A, Gontijo L, Lavandero B (2019) Manipulation of agricultural habitats to improve conservation biological control in South America. Neotrop Entomol 48:875–898. https://doi.org/10.1007/s13744-019-00725-1

Article  PubMed  Google Scholar 

Perdikis D, Fantinou A, Lykouressis D (2011) Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biol Control 59:13–21. https://doi.org/10.1016/j.biocontrol.2011.03.014

Article  Google Scholar 

Pervez A, Omkar A (2005) Functional responses of coccinellid predators: an illustration of a logistic approach. J Insect Sci 5:1–6. https://doi.org/10.1093/jis/5.1.5

Article  Google Scholar 

Comments (0)

No login
gif