Albashir A., Aljetlawi Erik, Sparrevik Kjell, Leonardsson (2004) Prey–predator size‐dependent functional response: derivation and rescaling to the real world. J Anim Ecol 73(2):239–252. https://doi.org/10.1111/jae.2004.73.issue-2https://doi.org/10.1111/j.0021-8790.2004.00800.x
Almeida PRD, Arruda HVD (1962) Controle do tripes causador do prateamento das fôlhas do amendoim, por meio de inseticidas. Bragantia 21:679–687. https://doi.org/10.1590/S0006-87051962000100039
Andow DA, Barratt BI, Pfannenstiel RS, Paula DP (2021) Exotic generalist arthropod biological control agents: need to improve environmental risk assessment to ensure safe use. Biol Control 66:1–8. https://doi.org/10.1007/s10526-020-10067-2
Arbogast RT, Flaherty BR, Press JW (1983) Demography of the predaceous bug Xylocoris sordidus (Reuter). Am Midl Nat 109:398–405. https://doi.org/10.2307/2425421
Arnó J, Roig J, Riudavets J (2008) Evaluation of Orius majusculus and O. laevigatus as predators of Bemisa tabaci and estimation of their prey preference. Biol Control 44:1–6. https://doi.org/10.1016/j.biocontrol.2007.10.009
Atakan E (2006) Associations between Frankliniella spp. and Orius niger populations in cotton. Phytoparasitica 34:221–234. https://doi.org/10.1007/BF02980949
Atakan E, Pehlivan S (2020) Influence of weed management on the abundance of thrips species (Thysanoptera) and the predatory bug, Orius niger (Hemiptera: Anthocoridae) in citrus mandarin. Appl Entomol Zool 55:71–81. https://doi.org/10.1007/s13355-019-00655-9
Baez I, Reitz SR, Funderburk JE (2004) Predation by Orius insidiosus (Heteroptera: Anthocoridae) on life stages and species of Frankliniella flower thrips (Thysanoptera: Thripidae) in pepper flowers. Environ Entomol 33:662–670. https://doi.org/10.1603/0046-225X-33.3.662
Baker BP, Green TA, Loker AJ (2020) Biological control and integrated pest management in organic and conventional systems. Biol Control 140:104095. https://doi.org/10.1016/j.biocontrol.2019.104095
Ballal CR, Yamada K (2016) Anthocorid predators. In: Omkar (Ed) Ecofriendly pest management for food security, 1st edn. Elsevier, New York, pp 183–216
Barzman M, Bàrberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Sattin M (2015) Eight principles of integrated pest management. Agron Sustain Dev 35:1199–1215. https://doi.org/10.1007/s13593-015-0327-9
Calore RA, Ferreira MC, Galli JC (2015) Efeitos de adjuvantes no controle de Enneothrips flavens Moulton, 1941 (Thysanoptera: Thripidae) na cultura do amendoim. Bras Cienc Agrar 10:74–81. https://doi.org/10.5039/agraria.v10i1a5043
Clercq PD (2002) Dark clouds and their silver linings: exotic generalist predators in augmentative biological control. Neotrop Entomol 31:169–176. https://doi.org/10.1590/S1519-566X2002000200001
Dawes JHP, Souza M (2013) A derivation of Holling’s type I, II and III functional responses in predator–prey systems. J Theor Biol 327:11–22. https://doi.org/10.1016/j.jtbi.2013.02.017
Article MathSciNet CAS PubMed ADS Google Scholar
Deguine JP, Aubertot JN, Flor RJ, Lescourret F, Wyckhuys KA, Ratnadass A (2021) Integrated pest management: good intentions, hard realities. A Review Agron Sustain Dev 41:38. https://doi.org/10.1007/s13593-021-00689-w
Di Stefano J (2005) Effect size estimates and confidence intervals: an alternative focus for the presentation and interpretation of ecological data. In: Burk AR (ed) New Trends in ecology research. Nova Science, New York, pp 71–102
Diehl E, Sereda E, Wolters V, Birkhofer K (2013) Effects of predator specialization, host plant and climate on biological control of aphids by natural enemies: a meta-analysis. J Appl Ecol 50:262–270. https://doi.org/10.1111/1365-2664.12032
Doğramaci M, Arthurs SP, Chen J, McKenzie C, Irrizary F, Osborne L (2011) Management of chilli thrips Scirtothrips dorsalis (Thysanoptera: Thripidae) on peppers by Amblyseius swirskii (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae). Biol Control 59:340–347. https://doi.org/10.1016/j.biocontrol.2011.09.008
Donnelly BE, Phillips TW (2001) Functional response of Xylocoris flavipes (Hemiptera: Anthocoridae)-effects of prey species and habitat. Environ Entomol 30:617–624. https://doi.org/10.1603/0046-225X-30.3.617
Farinelli JBM, Horita K, Santos DFL (2018) Analysis of the economic viability of the peanut crop in the region of Jaboticabal, São Paulo. Científica 46:215–220. https://doi.org/10.15361/1984-5529.2018v46n3p215-220
Fernandes OA, Michelotto MD (2022) Pragas do amendoim. In: Rada A et al (eds) Manual de entomologia: pragas das culturas, 1st edn. Ouro fino, MG, Agronômica Ceres, pp 41–56
Ge Y, Camara I, Wang Y, Liu P, Zhang L, Xing Y, Shi W (2018) Predation of Aphis craccivora (Hemiptera: Aphididae) by Orius sauteri (Hemiptera: Anthocoridae) under different temperatures. J Econ Entomol 111:2599–2604. https://doi.org/10.1093/jee/toy255
Gitonga LM, Overholt WA, Löhr B, Magambo JK, Mueke JM (2002) Functional response of Orius albidipennis (Hemiptera: Anthocoridae) to Megalurothrips sjostedti (Thysanoptera: Thripidae). Biol Control 24:1–6. https://doi.org/10.1016/S1049-9644(02)00001-4
Hassanzadeh-Avval M, Sadeghi-Namaghi H, Fekrat L (2019) Factors influencing functional response, handling time and searching efficiency of Anthocoris minki Dohrn (Hem.: Anthocoridae) as predator of Psyllopsis repens Loginova (Hem.: Psyllidae). Phytoparasitica 47:341–350. https://doi.org/10.1007/s12600-019-00739-w
Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398. https://doi.org/10.4039/Ent91385-7
Holling CS (1966) The functional response of invertebrate predators to prey density. Mem Entomol Soc Can 98:5–86. https://doi.org/10.4039/entm9848fv
Juliano SA (2001) Non-linear curve fitting: predation and functional response curves. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments, 2nd edn. Chapman & Hall, New York, pp 178–196
Kheirodin A, Simmons AM, Legaspi JC, Grabarczyk EE, Toews MD, Roberts PM, Schmidt JM (2020) Can generalist predators control Bemisia tabaci? Insects 11:823. https://doi.org/10.3390/insects11110823
Article PubMed PubMed Central Google Scholar
Koss AM, Snyder WE (2005) Alternative prey disrupt biocontrol by a guild of generalist predators. Biol Control 32(2):243–251. https://doi.org/10.1016/j.biocontrol.2004.10.002
Krey KL, Blubaugh CK, Chapman EG, Lynch CA, Snyder GB, Jensen AS, Snyder WE (2017) Generalist predators consume spider mites despite the presence of alternative prey. Biol Control 115:157–164. https://doi.org/10.1007/BF02371908
LeCato GL (1976) Predation by Xylocoris flavipes [Hem.: Anthocoridae]: Influence of stage, species and density of prey and of starvation and density of predator. Entomophaga 21:217–221. https://doi.org/10.1007/BF02371908
Lima ÉFB, Alencar ÁRSD, Nanini F, Michelotto MD, Corrêa AS (2022) “Unmasking the Villain”: integrative taxonomy reveals the real identity of the key pest (Thysanoptera: Thripidae) of peanuts (Arachis hypogaea L.) in South America. Insects 13:120. https://doi.org/10.3390/insects13020120
Article PubMed PubMed Central Google Scholar
Lin T, Zeng Z, Chen Y, You Y, Hu J, Yang F, Wei H (2021) Compatibility of six reduced-risk insecticides with Orius strigicollis (Heteroptera: Anthocoridae) predators for controlling Thrips hawaiiensis (Thysanoptera: Thripidae) pests. Ecotoxicol Environ Saf 226:112812. https://doi.org/10.1016/j.ecoenv.2021.112812
Article CAS PubMed Google Scholar
Liu P, Jia W, Zheng X, Zhang L, Sangbaramou R, Tan S, Shi W (2018) Predation functional response and life table parameters of Orius sauteri (Hemiptera: Anthocoridae) feeding on Megalurothrips usitatus (Thysanoptera: Thripidae). Fla Entomol 101:254–259. https://doi.org/10.1653/024.101.0216
Loomans AJ (2021) Every generalist biological control agent requires a special risk assessment. Biocontrol 66:23–35. https://doi.org/10.1007/s10526-020-10022-1
Messelink GJ, Janssen A (2014) Increased control of thrips and aphids in greenhouses with two species of generalist predatory bugs involved in intraguild predation. Biol Control 79:1–7. https://doi.org/10.1016/j.biocontrol.2014.07.009
Michelotto MD, De Godoy IJ, Pirotta MZ, Santos JF, Finoto EL, Pereira Fávero A (2017) Resistance to thrips (Enneothrips flavens) in wild and amphidiploid Arachis species. PLoS ONE 12:e0176811. https://doi.org/10.1371/journal.pone.0176811
Article CAS PubMed PubMed Central Google Scholar
Miranda MMM, Picanço MC, Zanuncio JC, Guedes RNC (1998) Ecological life table of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Biocontrol Sci Technol 8:597–606. https://doi.org/10.1080/09583159830117
Moraes ARAD, Lourenção AL, Godoy IJD, Teixeira GDC (2005) Infestation by Enneothrips flavens Moulton and yield of peanut cultivars. Sci Agric 62:469–472. https://doi.org/10.1590/S0103-90162005000500010
Naranjo SE, Ellsworth PC, Frisvold GB (2015) Economic value of biological control in integrated pest management of managed plant systems. Annu Rev Entomol 60:621–645. https://doi.org/10.1146/annurev-ento-010814-021005
Article CAS PubMed Google Scholar
Peñalver-Cruz A, Alvarez-Baca JK, Alfaro-Tapia A, Gontijo L, Lavandero B (2019) Manipulation of agricultural habitats to improve conservation biological control in South America. Neotrop Entomol 48:875–898. https://doi.org/10.1007/s13744-019-00725-1
Perdikis D, Fantinou A, Lykouressis D (2011) Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biol Control 59:13–21. https://doi.org/10.1016/j.biocontrol.2011.03.014
Pervez A, Omkar A (2005) Functional responses of coccinellid predators: an illustration of a logistic approach. J Insect Sci 5:1–6. https://doi.org/10.1093/jis/5.1.5
Comments (0)