DMPP attenuates lipopolysaccharide-induced lung injury by inhibiting glycocalyx degradation through activation of the cholinergic anti-inflammatory pathway

Alen NV (2022) The cholinergic anti-inflammatory pathway in humans: State-of-the-art review and future directions. Neurosci Biobehav Rev 136:104622. https://doi.org/10.1016/j.neubiorev.2022.104622

Article  PubMed  CAS  Google Scholar 

Altemeier WA, Matute-Bello G, Gharib SA, Glenny RW, Martin TR, Liles WC (2005) Modulation of lipopolysaccharide-induced gene transcription and promotion of lung injury by mechanical ventilation. J Immunol 175(5):3369–76. https://doi.org/10.4049/jimmunol.175.5.3369

Article  PubMed  CAS  Google Scholar 

Bellani G, Laffey JG, Pham T et al (2016) Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA. 315(8):788–800. https://doi.org/10.1001/jama.2016.0291

Article  PubMed  CAS  Google Scholar 

Benatti MN, Fabro AT, Miranda CH (2020) Endothelial glycocalyx shedding in the acute respiratory distress syndrome after flu syndrome. J Intensive Care. 8:72. https://doi.org/10.1186/s40560-020-00488-7

Article  PubMed  PubMed Central  Google Scholar 

Crowe AR, Yue W (2019) Semi-quantitative Determination of Protein Expression using Immunohistochemistry Staining and Analysis: An Integrated Protocol. Bio Protoc 9(24). https://doi.org/10.21769/BioProtoc.3465

Dull RO, Hahn RG (2022) The glycocalyx as a permeability barrier: basic science and clinical evidence. Crit Care 26(1):273. https://doi.org/10.1186/s13054-022-04154-2

Article  PubMed  PubMed Central  Google Scholar 

Eppensteiner J, Kwun J, Scheuermann U et al (2019) Damage- and pathogen-associated molecular patterns play differential roles in late mortality after critical illness. JCI Insight 4(16). https://doi.org/10.1172/jci.insight.127925

Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K (2017) Expression and Function of the Cholinergic System in Immune Cells. Front Immunol 8:1085. https://doi.org/10.3389/fimmu.2017.01085

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gorman EA, O’Kane CM, McAuley DF (2022) Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management. Lancet 400(10358):1157–1170. https://doi.org/10.1016/S0140-6736(22)01439-8

Article  PubMed  Google Scholar 

Hu Z, Cano I, D’Amore PA (2021) Update on the Role of the Endothelial Glycocalyx in Angiogenesis and Vascular Inflammation. Front Cell Dev Biol 9:734276. https://doi.org/10.3389/fcell.2021.734276

Article  PubMed  PubMed Central  Google Scholar 

Kalkman HO, Feuerbach D (2016) Modulatory effects of alpha7 nAChRs on the immune system and its relevance for CNS disorders. Cell Mol Life Sci 73(13):2511–30. https://doi.org/10.1007/s00018-016-2175-4

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, Group NCRRGW (2010) Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160(7):1577–9. https://doi.org/10.1111/j.1476-5381.2010.00872.x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lei W, Zhao C, Sun J, Jin Y, Duan Z (2022) Activation of alpha7nAChR preserves intestinal barrier integrity by enhancing the HO-1 / STAT3 signaling to inhibit NF-kappaB activation in mice. Biomed Pharmacother 149:112733. https://doi.org/10.1016/j.biopha.2022.112733

Article  PubMed  CAS  Google Scholar 

Li J, Qi Z, Li D et al (2021) Alveolar epithelial glycocalyx shedding aggravates the epithelial barrier and disrupts epithelial tight junctions in acute respiratory distress syndrome. Biomed Pharmacother 133:111026. https://doi.org/10.1016/j.biopha.2020.111026

Article  PubMed  CAS  Google Scholar 

Li H, Gao J, Chang Y, Li K, Wang L, Ju C, Zhang F (2021) JWX-A0108, a positive allosteric modulator of alpha7 nAChR, attenuates cognitive deficits in APP/PS1 mice by suppressing NF-kappaB-mediated inflammation. Int Immunopharmacol. 96:107726. https://doi.org/10.1016/j.intimp.2021.107726

Article  PubMed  CAS  Google Scholar 

Matute-Bello G, Downey G, Moore BB et al (2011) An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 44(5):725–38. https://doi.org/10.1165/rcmb.2009-0210ST

Article  PubMed  PubMed Central  CAS  Google Scholar 

Murphy LS, Wickersham N, McNeil JB, Shaver CM, May AK, Bastarache JA, Ware LB (2017) Endothelial glycocalyx degradation is more severe in patients with non-pulmonary sepsis compared to pulmonary sepsis and associates with risk of ARDS and other organ dysfunction. Ann Intensive Care 7(1):102. https://doi.org/10.1186/s13613-017-0325-y

Noda K, Philips BJ, Atale N, Sanchez PG (2023) Endothelial Protection in Lung Grafts through Heparanase Inhibition During Ex Vivo Lung Perfusion in Rats. J Heart Lung Transplant. https://doi.org/10.1016/j.healun.2023.03.010

Article  PubMed  Google Scholar 

Pedersen JE, Bergqvist CA, Larhammar D (2019) Evolution of vertebrate nicotinic acetylcholine receptors. BMC Evol Biol 19(1):38. https://doi.org/10.1186/s12862-018-1341-8

Article  PubMed  PubMed Central  Google Scholar 

Qi F, Zhou H, Gu P et al (2021) Endothelial glycocalyx degradation is associated with early organ impairment in polytrauma patients. BMC Emerg Med 21(1):52. https://doi.org/10.1186/s12873-021-00446-y

Rovas A, Osiaevi I, Buscher K et al (2021) Microvascular dysfunction in COVID-19: the MYSTIC study. Angiogenesis. 24(1):145–157. https://doi.org/10.1007/s10456-020-09753-7

Article  PubMed  CAS  Google Scholar 

Sauer A, Seeliger B, Jandl K et al (2022) Circulating hyaluronic acid signature in CAP and ARDS - the role of pneumolysin in hyaluronic acid shedding. Matrix Biol 114:67–83. https://doi.org/10.1016/j.matbio.2022.11.003

Article  PubMed  CAS  Google Scholar 

Schmidt EP, Yang Y, Janssen WJ et al (2012) The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 18(8):1217–23. https://doi.org/10.1038/nm.2843

Article  PubMed  CAS  Google Scholar 

Stokes C, Treinin M, Papke RL (2015) Looking below the surface of nicotinic acetylcholine receptors. Trends Pharmacol Sci 36(8):514–23. https://doi.org/10.1016/j.tips.2015.05.002

Article  PubMed  PubMed Central  CAS  Google Scholar 

Van Eycke YR, Allard J, Salmon I, Debeir O, Decaestecker C (2017) Image processing in digital pathology: an opportunity to solve inter-batch variability of immunohistochemical staining. Sci Rep 7:42964. https://doi.org/10.1038/srep42964

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang H, Yu M, Ochani M et al (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921):384–8. https://doi.org/10.1038/nature01339

Article  PubMed  CAS  Google Scholar 

Xiang XB, Chen H, Wu YL, Wang K, Yue X, Cheng XQ (2022) The Effect of Preoperative Methylprednisolone on Postoperative Delirium in Older Patients Undergoing Gastrointestinal Surgery: A Randomized, Double-Blind, Placebo-Controlled Trial. J Gerontol A Biol Sci Med Sci 77(3):517–523. https://doi.org/10.1093/gerona/glab248

Article  PubMed  CAS  Google Scholar 

Xu SW, Ilyas I, Weng JP (2023) Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin. 44(4):695–709. https://doi.org/10.1038/s41401-022-00998-0

Article  PubMed  CAS  Google Scholar 

Yang Z, Nicholson SE, Cancio TS, Cancio LC, Li Y (2023) Complement as a vital nexus of the pathobiological connectome for acute respiratory distress syndrome: An emerging therapeutic target. Front Immunol 14:1100461. https://doi.org/10.3389/fimmu.2023.1100461

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang H, Wang Y, Qu M, Li W, Wu D, Cata JP, Miao C (2023) Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 13(1):e1170. https://doi.org/10.1002/ctm2.1170

Article  PubMed  PubMed Central  CAS  Google Scholar 

留言 (0)

沒有登入
gif