Metabolic dysfunction induced by HFD + L-NAME preferentially affects hippocampal mitochondria, impacting spatial memory in rats

Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640–1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644

Article  PubMed  CAS  Google Scholar 

Aoun M, Feillet-Coudray C, Fouret G, Chabi B, Crouzier D, Ferreri C et al (2012) Rat liver mitochondrial membrane characteristics and mitochondrial functions are more profoundly altered by dietary lipid quantity than by dietary lipid quality: effect of different nutritional lipid patterns. Br J Nutr 107(5):647–659. https://doi.org/10.1017/S000711451100331X

Article  PubMed  CAS  Google Scholar 

Belosludtseva NV, Kireeva TA, Belosludtsev KN, Khunderyakova NV, Mironova GD (2021) Comparative study of functional changes in Heart Mitochondria in two modes of Epinephrine exposure modeling myocardial Injury in rats. Bull Exp Biol Med 171(6):727–731. https://doi.org/10.1007/s10517-021-05304-2

Article  PubMed  CAS  Google Scholar 

Bliss TV, Cooke SF (2011) Long-term potentiation and long-term depression: a clinical perspective. Clin (Sao Paulo) 66(Suppl 1):3–17. https://doi.org/10.1590/s1807-59322011001300002

Article  Google Scholar 

Cavaliere G, Trinchese G, Penna E, Cimmino F, Pirozzi C, Lama A et al (2019) High-Fat Diet induces Neuroinflammation and mitochondrial impairment in mice cerebral cortex and synaptic fraction. Front Cell Neurosci 13:509. https://doi.org/10.3389/fncel.2019.00509

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cordero-Herrera I, Guimaraes DD, Moretti C, Zhuge Z, Han H, McCann Haworth S et al (2020) Head-to-head comparison of inorganic nitrate and metformin in a mouse model of cardiometabolic disease. Nitric Oxide 97:48–56. https://doi.org/10.1016/j.niox.2020.01.013

Article  PubMed  CAS  Google Scholar 

de Bem AF, Krolow R, Farias HR, de Rezende VL, Gelain DP, Moreira JCF et al (2020) Animal models of metabolic disorders in the study of neurodegenerative diseases: an overview. Front Neurosci 14:604150. https://doi.org/10.3389/fnins.2020.604150

Article  PubMed  Google Scholar 

de Mello AH, Schraiber RB, Goldim MPS, Garcez ML, Gomes ML, de Bem Silveira G et al (2019) Omega-3 fatty acids attenuate brain alterations in High-Fat Diet-Induced obesity model. Mol Neurobiol 56(1):513–524. https://doi.org/10.1007/s12035-018-1097-6

Article  PubMed  CAS  Google Scholar 

de Paula GC, Brunetta HS, Engel DF, Gaspar JM, Velloso LA, Engblom D et al (2021) Hippocampal function is impaired by a short-term High-Fat Diet in mice: increased blood-brain barrier permeability and neuroinflammation as triggering events. Front Neurosci 15:734158. https://doi.org/10.3389/fnins.2021.734158

Article  PubMed  PubMed Central  Google Scholar 

Diaz A, Munoz-Arenas G, Venegas B, Vazquez-Roque R, Flores G, Guevara J et al (2021) Metforminium Decavanadate (MetfDeca) Treatment ameliorates hippocampal neurodegeneration and Recognition Memory in a metabolic syndrome model. Neurochem Res 46(5):1151–1165. https://doi.org/10.1007/s11064-021-03250-z

Article  PubMed  CAS  Google Scholar 

Dutheil S, Ota KT, Wohleb ES, Rasmussen K, Duman RS (2016) High-Fat Diet Induced anxiety and Anhedonia: impact on brain homeostasis and inflammation. Neuropsychopharmacology 41(7):1874–1887. https://doi.org/10.1038/npp.2015.357

Article  PubMed  PubMed Central  CAS  Google Scholar 

Flamment M, Gueguen N, Wetterwald C, Simard G, Malthiery Y, Ducluzeau PH (2009) Effects of the cannabinoid CB1 antagonist rimonabant on hepatic mitochondrial function in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 297(5):E1162–1170. https://doi.org/10.1152/ajpendo.00169.2009

Article  PubMed  CAS  Google Scholar 

Gao W, Wang W, Zhang J, Deng P, Hu J, Yang J et al (2019) Allicin ameliorates obesity comorbid depressive-like behaviors: involvement of the oxidative stress, mitochondrial function, autophagy, insulin resistance and NOX/Nrf2 imbalance in mice. Metab Brain Dis 34(5):1267–1280. https://doi.org/10.1007/s11011-019-00443-y

Article  PubMed  CAS  Google Scholar 

Gavini K, Parameshwaran K (2023) Western blot. StatPearls. Treasure Island (FL) ineligible companies. Kodeeswaran Parameshwaran declares no relevant financial relationships with ineligible companies, Disclosure

Google Scholar 

Hakala JO, Pahkala K, Juonala M, Salo P, Kahonen M, Hutri-Kahonen N et al (2021) Cardiovascular Risk factor trajectories since childhood and cognitive performance in midlife: the Cardiovascular Risk in Young finns Study. Circulation 143(20):1949–1961. https://doi.org/10.1161/CIRCULATIONAHA.120.052358

Article  PubMed  CAS  Google Scholar 

Hao S, Dey A, Yu X, Stranahan AM (2016) Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain Behav Immun 51:230–239. https://doi.org/10.1016/j.bbi.2015.08.023

Article  PubMed  Google Scholar 

Hirode G, Wong RJ (2020) Trends in the prevalence of metabolic syndrome in the United States, 2011–2016. JAMA 323(24):2526–2528. https://doi.org/10.1001/jama.2020.4501

Article  PubMed  PubMed Central  Google Scholar 

Hutter E, Unterluggauer H, Garedew A, Jansen-Durr P, Gnaiger E (2006) High-resolution respirometry–a modern tool in aging research. Exp Gerontol 41(1):103–109. https://doi.org/10.1016/j.exger.2005.09.011

Article  PubMed  CAS  Google Scholar 

Johns C, Gavras I, Handy DE, Salomao A, Gavras H (1996) Models of experimental hypertension in mice. Hypertension 28(6):1064–1069. https://doi.org/10.1161/01.hyp.28.6.1064

Article  PubMed  CAS  Google Scholar 

Kitakata H, Endo J, Hashimoto S, Mizuno E, Moriyama H, Shirakawa K et al (2021) Imeglimin prevents heart failure with preserved ejection fraction by recovering the impaired unfolded protein response in mice subjected to cardiometabolic stress. Biochem Biophys Res Commun 572:185–190. https://doi.org/10.1016/j.bbrc.2021.07.090

Article  PubMed  CAS  Google Scholar 

Knopman DS, Mosley TH, Catellier DJ, Coker LH (2009) & Atherosclerosis Risk in Communities Study Brain, M. R. I. S. Fourteen-year longitudinal study of vascular risk factors, APOE genotype, and cognition: the ARIC MRI Study. Alzheimers Dement, 5(3), 207–214, https://doi.org/10.1016/j.jalz.2009.01.027

Kowaltowski AJ, Menezes-Filho SL, Assali EA, Goncalves IG, Cabral-Costa JV, Abreu P et al (2019) Mitochondrial morphology regulates organellar ca(2+) uptake and changes cellular ca(2+) homeostasis. FASEB J 33(12):13176–13188. https://doi.org/10.1096/fj.201901136R

Article  PubMed  PubMed Central  CAS  Google Scholar 

Livingston JM, McDonald MW, Gagnon T, Jeffers MS, Gomez-Smith M, Antonescu S et al (2020) Influence of metabolic syndrome on cerebral perfusion and cognition. Neurobiol Dis 137:104756. https://doi.org/10.1016/j.nbd.2020.104756

Article  PubMed  CAS  Google Scholar 

Mancini G, Dias C, Lourenco CF, Laranjinha J, de Bem A, Ledo A (2021) A High Fat/Cholesterol Diet recapitulates some Alzheimer’s Disease-Like features in mice: focus on hippocampal mitochondrial dysfunction. J Alzheimers Dis 82(4):1619–1633. https://doi.org/10.3233/JAD-210122

Article  PubMed  CAS  Google Scholar 

Mellendijk L, Wiesmann M, Kiliaan AJ (2015) Impact of Nutrition on cerebral circulation and cognition in the metabolic syndrome. Nutrients 7(11):9416–9439. https://doi.org/10.3390/nu7115477

Article  PubMed  PubMed Central  CAS  Google Scholar 

Moreira PI, Santos MS, Seica R, Oliveira CR (2007) Brain mitochondrial dysfunction as a link between Alzheimer’s disease and diabetes. J Neurol Sci 257(1–2):206–214. https://doi.org/10.1016/j.jns.2007.01.017

Article  PubMed  CAS  Google Scholar 

Moreno-Fernandez S, Garces-Rimon M, Vera G, Astier J, Landrier JF, Miguel M (2018) High Fat/High glucose Diet induces metabolic syndrome in an experimental rat model. Nutrients 10(10). https://doi.org/10.3390/nu10101502

Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P et al (2010) The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol 56(14):1113–1132. https://doi.org/10.1016/j.jacc.2010.05.034

Article  PubMed  Google Scholar 

Nath S, Ghosh SK, Choudhury Y (2017) A murine model of type 2 diabetes mellitus developed using a combination of high fat diet and multiple low doses of streptozotocin treatment mimics the metabolic characteristics of type 2 diabetes mellitus in humans. J Pharmacol Toxicol Methods 84:20–30. https://doi.org/10.1016/j.vascn.2016.10.007

Article  PubMed  CAS  Google Scholar 

National Research Council (2011) Guide for the care and use of laboratory animals, 8th edn. The National Academies Press, Washington, DC

Park HS, Cho HS, Kim TW (2018) Physical exercise promotes memory capability by enhancing hippocampal mitochondrial functions and inhibiting apoptosis in obesity-induced insulin resistance by high fat diet. Metab Brain Dis 33(1):283–292. https://doi.org/10.1007/s11011-017-0160-8

Article  PubMed  CAS  Google Scholar 

Park G, Lee JY, Han HM, An HS, Jin Z, Jeong EA et al (2021) Ablation of dynamin-related protein 1 promotes diabetes-induced synaptic injury in the hippocampus. Cell Death Dis 12(5):445. https://doi.org/10.1038/s41419-021-03723-7

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pintana H, Apaijai N, Chattipakorn N, Chattipakorn SC (2013) DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats. J Endocrinol 218(1):1–11. https://doi.org/10.1530/JOE-12-0521

Article  PubMed  CAS  Google Scholar 

Pinti MV, Fink GK, Hathaway QA, Durr AJ, Kunovac A, Hollander JM (2019) Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol Endocrinol Metab 316(2):E268–E285. https://doi.org/10.1152/ajpendo.00314.2018

Article  PubMed  PubMed Central  CAS 

留言 (0)

沒有登入
gif