Anacardic Acid Mixture: Utilization of a Byproduct for the Sustainable Development of a Potential Antichagasic Agent Against Trypanosoma cruzi

Barbosa H, Thevenard F, Quero RJ, Tempone AG, Honorio KM, Lago JHG (2023) The potential of secondary metabolites from plants as drugs or leads against Trypanosoma cruzi-an update from 2012 to 2021. Curr Top Med Chem 23:159–213. https://doi.org/10.2174/1568026623666221212111514

Article  CAS  PubMed  Google Scholar 

Chen Z, Cui Q, Cooper L, Zhang P, Lee H, Chen Z, Wang Y, Liu X, Rong L, Du R (2021) Ginkgolic acid and anacardic acid are specific covalent inhibitors of SARS-CoV-2 cysteine proteases. Cell Biosci 11:45. https://doi.org/10.1186/s13578-021-00564-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Echeverría LE, Marcus R, Novick G, Estani SS, Ralston K, Zaidel EJ, Forsyth C, Ribeiro ALP, Mendoza I, Falconi ML, Mitelman J, Morillo CA, Pereiro AC, Pinazo MJ, Salvatella R, Martinez F, Pere P, Liprandi AS, Piñeiro DJ, Molina GR (2020) WHF IASC roadmap on Chagas disease. Glob Heart 15:26. https://doi.org/10.5334/GH.484

Article  PubMed  PubMed Central  Google Scholar 

Freitas RF, Prokopczyk IM, Oliva G, Andricopulo AD, Trevisan MTS, Vilegas W, Silva MGV (2009) Discovery of novel Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase inhibitors. Bioorganic Med Chem 17:2476–2482. https://doi.org/10.1016/j.bmc.2009.01.079

Article  CAS  Google Scholar 

Gondim FL, Ferreira RM, Nogueira TR, Serra DS, Rios SMA, Pimenta ATA, Cavalcante FSA (2021) Effects of anacardic acid monoene on the respiratory system of mice submitted to acute respiratory distress syndrome. Rev Bras Farmacogn 31:232–238. https://doi.org/10.1007/s43450-021-00151-8

Article  CAS  Google Scholar 

Lima RA, de Souza SLX, Lima LA, Batista ALX, de Araujo JTC, Sousa FFO, Rolim JPML, Bandeira TJPG (2020) Antimicrobial effect of anacardic acid-loaded zein nanoparticles loaded on Streptococcus mutans biofilms. Braz J Microbiol 51:1623–1630. https://doi.org/10.1007/s42770-020-00320-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mazzetto SE, Lomonaco D, Mele G (2009) Óleo da castaha do caju: Oportuidades e desafios no contexto do desenvolvimento e sustentabilidade industrial. Quim Nova 32:732–741

Article  CAS  Google Scholar 

Morais SM, Silva KA, Araujo H, Vieira IGP, Alves DR, Fontenelle ROS, Silva AMS (2017) Anacardic acid constituents from cashew nutshell liquid: NMR characterization and the effect of unsaturation on its biological activities. Pharmaceuticals 10:31. https://doi.org/10.3390/ph10010031

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nwaka S, Hudson A (2006) Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov 5:941–955. https://doi.org/10.1038/nrd2144

Article  CAS  PubMed  Google Scholar 

Paramashivappa R, Phani KP, Vithayathil PJ, Srinivasa RA (2001) Novel method for isolation of major phenolic constituents from cashew (Anacardium occidentale L.) nut shell liquid. J Agric Food Chem 49:2548–2551. https://doi.org/10.1021/jf001222j

Article  CAS  PubMed  Google Scholar 

Pereira JM, Severino RP, Vieira PC, Fernandes JB, da Silva MFGF, Zottis A, Andricopulo AD, Oliva G, Corrêa AG (2008) Anacardic acid derivatives as inhibitors of glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi. Bioorganic Med Chem 16:8889–8895. https://doi.org/10.1016/j.bmc.2008.08.057

Article  CAS  Google Scholar 

Ribeiro V, Dias N, Paiva T, Hagström-Bex L, Nitz N, Pratesi R, Hecht M (2020) Current trends in the pharmacological management of Chagas disease. Int J Parasitol Drugs Drug Resist 12:7–17. https://doi.org/10.1016/j.ijpddr.2019.11.004

Article  PubMed  Google Scholar 

Rodrigues JHS, Ueda-Nakamura T, Correa AG, Sangi DP, Nakamura CV (2014) A quinoxaline derivative as a potent chemotherapeutic agent, alone or in combination with benznidazole, against Trypanosoma cruzi. PLoS ONE 9:e85706. https://doi.org/10.1371/journal.pone.0085706

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swift ML (1997) GraphPad prism, data analysis, and scientific graphing. J Chem Inf Comput Sci 37:411–412

Article  CAS  Google Scholar 

Umehara E, Silva TAC, Mendes VM, Guadagninc RC, Sartorellic P, Tempone AG, Lagoa JHG (2020) Differential lethal action of C17:2 and C17:0 anacardic acid derivatives Trypanosoma cruzi – a mechanistic study. Bioorg Chem 102:104068. https://doi.org/10.1016/j.bioorg.2020.104068

Article  CAS  PubMed  Google Scholar 

Vahermo M, Krogerus S, Nasereddin A, Kaiser M, Brun R, Jaffe CL, Moreira VM (2016) Antiprotozoal activity of dehydroabietic acid derivatives against Leishmania donovani and Trypanosoma cruzi. Med Chem Comm 7:457–463

Article  CAS  Google Scholar 

Vien LT, Nga NT, Hue PTK, Kha THB, Hoang NH, Hue PT,Thien PN, Huang CYF, Van Kiem P, Thao Do T (2022) A new liposomal formulation of hydrogenated anacardic acid to improve activities against cancer stem cells. Nat Prod Commun 17. https://doi.org/10.1177/1934578X221105696

Villamizar LH, Cardoso MDG, Andrade JD, Teixeira ML, Soares MJ (2017) Linalool, a Piper aduncum essential oil component, has selective activity against Trypanosoma cruzi trypomastigote forms at 4 C. Mem Inst Oswaldo Cruz 112:131–139. https://doi.org/10.1590/0074-02760160361

Article  CAS  PubMed  PubMed Central  Google Scholar 

WHO (2023) Chagas disease (also known as American trypanosomiasis). https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis). Accessed on July 14 2023

留言 (0)

沒有登入
gif