C-Glycosylflavones and Their (E)-p-Coumaroyl Acylated Derivatives from Episperm of Fenugreek Microgreen as Xanthine Oxidase Inhibitors

Abbasi-Parizad P, De Nisi P, Scaglia B, Scarafoni A, Pilu S, Adani F (2021) Recovery of phenolic compounds from agro-industrial by-products: evaluating antiradical activities and immunomodulatory properties. Food Bioprod Process 127:338–348. https://doi.org/10.1016/j.fbp.2021.03.015

Article  CAS  Google Scholar 

Acharya SN, Thomas JE, Basu SK (2006) Fenugreek: an “old world” crop for the “new world.” Biodiversity 7:27–30. https://doi.org/10.1080/14888386.2006.9712808

Article  Google Scholar 

Adamska M, Lutomski J (1971) C-Glycosylflavones in seeds of Trigonella foenum-graecum. Planta Med 20:224–229. https://doi.org/10.1055/s-0028-1099697

Article  CAS  PubMed  Google Scholar 

Ahmad A, Alghamdi SS, Mahmood K, Afzal M (2016) Fenugreek a multipurpose crop: potentialities and improvements. Saudi J Biol Sci 23:300–310. https://doi.org/10.1016/j.sjbs.2015.09.015

Article  PubMed  Google Scholar 

Bahmani M, Shirzad H, Mirhosseini M, Mesripour A, Rafieian-Kopaei M (2016) A review on ethnobotanical and therapeutic uses of fenugreek (Trigonella foenum-graceum L). J Evid Based Complementary Altern Med 21:53–62. https://doi.org/10.1177/2156587215583405

Article  CAS  PubMed  Google Scholar 

Chang CC, Ho SL, Lee SS (2015) Acylated glucosylflavones as α-glucosidase inhibitors from Tinospora crispa leaf. Bioorgan Med Chem 23:3388–3396. https://doi.org/10.1016/j.bmc.2015.04.053

Article  CAS  Google Scholar 

Ebert AW (2022) Sprouts and microgreens-novel food sources for healthy diets. Plants 11:571. https://doi.org/10.3390/plants11040571

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hao B, Caulfield JC, Hamilton ML, Pickett JA, Midega CA, Khan ZR, Wang J, Hooper AM (2016) Biosynthesis of natural and novel C-glycosylflavones utilising recombinant Oryza sativa C-glycosyltransferase (OsCGT) and Desmodium incanum root proteins. Phytochemistry 125:73–87. https://doi.org/10.1016/j.phytochem.2016.02.013

Article  CAS  PubMed  Google Scholar 

He YF, Lv HH, Wang XY, Suo Y, Wang HL (2014) Isolation and purification of six bioactive compounds from the seeds of Trigonella foenum-graecum L. using high-speed counter-current chromatography. Sep Sci Technol 49:580–587. https://doi.org/10.1080/01496395.2013.836229

Article  CAS  Google Scholar 

Hou YX, Sun SW, Liu Y, Li Y, Liu XH, Wang W, Zhang S, Wang W (2019) An improved method for the synthesis of butein using SOCl2/EtOH as catalyst and deciphering its inhibition mechanism on xanthine oxidase. Molecules 24:1948. https://doi.org/10.3390/molecules24101948

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan QA, Khan AA, Ansari S, Jahangir U (2015) Hulbah (Trigonella foenum-graecum.): a review. Int J Pharm Sci Res 2:315–319. https://doi.org/10.13040/ijpsr.0975-8232.ijp.2(7).315-19

Article  CAS  Google Scholar 

Kralj Cigic I, Rupnik S, Rijavec T, Poklar Ulrih N, Cigic B (2020) Accumulation of agmatine, spermidine, and spermine in sprouts and microgreens of alfalfa, fenugreek, lentil, and daikon radish. Foods 9:547. https://doi.org/10.3390/foods9050547

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar K, Yadav AN, Kumar V, Vyas P, Dhaliwal HS (2017) Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour Bioprocess 4:18. https://doi.org/10.1186/s40643-017-0148-6

Article  Google Scholar 

Kyriacou MC, Rouphael Y, Di Gioia F, Kyratzis A, Serio F, Renna M, De Pascale S, Santamaria P (2016) Micro-scale vegetable production and the rise of microgreens. Trends Food Sci Tech 57:103–115. https://doi.org/10.1016/j.tifs.2016.09.005

Article  CAS  Google Scholar 

Lin LZ, Yang QY, Zhao K, Zhao MM (2018) Identification of the free phenolic profile of Adlay bran by UPLC-QTOF-MS/MS and inhibitory mechanisms of phenolic acids against xanthine oxidase. Food Chem 253:108–118. https://doi.org/10.1016/j.foodchem.2018.01.139

Article  CAS  PubMed  Google Scholar 

Luan GX, Wang YW, Wang ZH, Zhou WN, Hu N, Li G, Wang HL (2018) Flavonoid glycosides from fenugreek seeds regulate glycolipid metabolism by improving mitochondrial function in 3T3-L1 adipocytes in vitro. J Agric Food Chem 66:3169–3178. https://doi.org/10.1021/acs.jafc.8b00179

Article  CAS  PubMed  Google Scholar 

Martins IM, Macedo GA, Macedo JA, Roberto BS, Chen Q, Blumberg JB, Chen CO (2017) Tannase enhances the anti-inflammatory effect of grape pomace in Caco-2 cells treated with IL-1β. J Funct Foods 29:69–76. https://doi.org/10.1016/j.jff.2016.12.011

Article  CAS  Google Scholar 

Mir SA, Shah MA, Mir MM (2017) Microgreens: production, shelf life, and bioactive components. Crit Rev Food Sci Nutr 57:2730–2736. https://doi.org/10.1080/10408398.2016.1144557

Article  CAS  PubMed  Google Scholar 

Nile SH, Park SW (2014) Antioxidant, α-glucosidase and xanthine oxidase inhibitory activity of bioactive compounds from maize (Zea mays L.). Chem Biol Drug Des 83:119–125. https://doi.org/10.1111/cbdd.12205

Article  CAS  PubMed  Google Scholar 

Ruwali P, Pandey N, Jindal K, Singh RV (2022) Fenugreek (Trigonella foenum-graecum): nutraceutical values, phytochemical, ethnomedicinal and pharmacological overview. S Afr J Bot 151:423–431. https://doi.org/10.1016/j.sajb.2022.04.014

Article  CAS  Google Scholar 

Singh N, Yadav SS, Kumar S, Narashiman B (2022) Ethnopharmacological, phytochemical and clinical studies on fenugreek (Trigonella foenum-graecum L.). Food Biosci 46:101546. https://doi.org/10.1016/j.fbio.2022.101546

Wang GR, Tang WZ, Yao QQ, Zhong H, Liu YJ (2010) New flavonoids with 2BS cell proliferation promoting effect from the seeds of Trigonella foenum-graecum L. J Nat Med 64:358–361. https://doi.org/10.1007/s11418-010-0407-8

Article  CAS  PubMed  Google Scholar 

Wang Y, Zhang Z, He R, Yang B, Wang L, Huang Y (2020) Study on the chemical constituents of the aerial parts of Polygonatum sibiricum and its pancreatic lipase inhibitory activity. Nat Prod Res Dev 32:1811–1817. https://doi.org/10.16333/j.1001-6880.2020.11.002

Article  CAS  Google Scholar 

Wang J, Sun SW, Zhao K, Shi HL, Fan JH, Wang H, Liu Y, Liu XH, Wang W (2021) Insights into the inhibitory mechanism of purpurogallin on xanthine oxidase by multiple spectroscopic techniques and molecular docking. J Mol Struct 1228:129772. https://doi.org/10.1016/j.molstruc.2020.129772

Article  CAS  Google Scholar 

Wang D, Bu T, Li YQ, He YY, Yang F, Zou L (2022) Pharmacological activity, pharmacokinetics, and clinical research progress of puerarin. Antioxidants 11:2121. https://doi.org/10.3390/antiox11112121

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao DN, Zhang BY, Zhu JF, Zhang QR, Hu YJ, Wang SP, Wang YT, Cao H, Xiao JB (2020) Advances on application of fenugreek seeds as functional foods: pharmacology, clinical application, products, patents and market. Crit Rev Food Sci 60:2342–2352. https://doi.org/10.1080/10408398.2019.1635567

Article  CAS  Google Scholar 

Zeng N, Zhang GW, Hu X, Pan JH, Gong D (2019) Mechanism of fisetin suppressing superoxide anion and xanthine oxidase activity. J Funct Foods 58:1–10. https://doi.org/10.1016/j.jff.2019.04.044

Article  CAS  Google Scholar 

Zhang YQ, Zhang M, Wang ZL, Qiao X, Ye M (2022) Advances in plant-derived C-glycosides: phytochemistry, bioactivities, and biotechnological production. Biotechnol Adv 60:108030. https://doi.org/10.1016/j.biotechadv.2022.108030

Article  CAS  PubMed  Google Scholar 

Zhao J, Huang L, Sun CY, Zhao DS, Tang HJ (2020) Studies on the structure-activity relationship and interaction mechanism of flavonoids and xanthine oxidase through enzyme kinetics, spectroscopy methods and molecular simulations. Food Chem 323:126807. https://doi.org/10.1016/j.foodchem.2020.126807

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif