Association between total and animal proteins with risk of fracture: A systematic review and dose–response meta-analysis of cohort studies

Cieza A, Causey K, Kamenov K, Hanson SW, Chatterji S, Vos T (2020) Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet 396:2006–2017

Article  CAS  Google Scholar 

Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521

Article  CAS  PubMed  Google Scholar 

Center JR (2017) Fracture burden: what two and a half decades of Dubbo Osteoporosis Epidemiology Study data reveal about clinical outcomes of osteoporosis. Curr Osteoporos Rep 15:88–95

Article  PubMed  Google Scholar 

Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, Davidson KW, Doubeni CA, Epling JW, Kemper AR, Kubik M (2018) Screening for osteoporosis to prevent fractures: US Preventive Services Task Force recommendation statement. JAMA 319:2521–2531

Article  PubMed  Google Scholar 

Johnston CB, Dagar M (2020) Osteoporosis in older adults. Medical. Clinics 104:873–884

Google Scholar 

Boonen S, Reginster J-Y, Kaufman J-M, Lippuner K, Zanchetta J, Langdahl B, Rizzoli R, Lipschitz S, Dimai HP, Witvrouw R (2012) Fracture risk and zoledronic acid therapy in men with osteoporosis. N Engl J Med 367:1714–1723

Article  CAS  PubMed  Google Scholar 

Donaldson L, Reckless I, Scholes S, Mindell JS, Shelton NJ (2008) The epidemiology of fractures in England. J Epidemiol Community Health 62:174–180

Article  CAS  PubMed  Google Scholar 

Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden: a report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:1–115

Article  Google Scholar 

Tatangelo G, Watts J, Lim K, Connaughton C, Abimanyi-Ochom J, Borgström F, Nicholson GC, Shore-Lorenti C, Stuart AL, Iuliano-Burns S (2019) The cost of osteoporosis, osteopenia, and associated fractures in Australia in 2017. J Bone Miner Res 34:616–625

Article  PubMed  Google Scholar 

Gullberg B, Johnell O, Kanis J (1997) World-wide projections for hip fracture. Osteoporosis Int 7:407–413

Article  CAS  Google Scholar 

Dong Y, Zhao R, Wang C, Guo T (2018) Tuina for osteoporosis: a systematic review protocol. Medicine 97:e9974

Article  PubMed  PubMed Central  Google Scholar 

Lee DR, Lee J, Rota M, Lee J, Ahn HS, Park SM, Shin D (2014) Coffee consumption and risk of fractures: a systematic review and dose–response meta-analysis. Bone 63:20–28

Article  CAS  PubMed  Google Scholar 

Qu X, Zhang X, Zhai Z, Li H, Liu X, Li H, Liu G, Zhu Z, Hao Y, Dai K (2014) Association between physical activity and risk of fracture. J Bone Miner Res 29:202–211

Article  PubMed  Google Scholar 

Shen GS, Li Y, Zhao G, Zhou HB, Xie ZG, Xu W, Chen HN, Dong QR, Xu YJ (2015) Cigarette smoking and risk of hip fracture in women: a meta-analysis of prospective cohort studies. Injury 46:1333–1340

Article  PubMed  Google Scholar 

Wu A-M, Sun X-L, Lv Q-B, Zhou Y, Xia D-D, Xu H-Z, Huang Q-S, Chi Y-L (2015) The relationship between dietary protein consumption and risk of fracture: a subgroup and dose-response meta-analysis of prospective cohort studies. Sci Rep 5:9151

Article  PubMed  PubMed Central  Google Scholar 

Xu J, Song C, Song X, Zhang X, Li X (2017) Carotenoids and risk of fracture: a meta-analysis of observational studies. Oncotarget 8:2391

Article  PubMed  Google Scholar 

Beasley JM, LaCroix AZ, Larson JC, Huang Y, Neuhouser ML, Tinker LF, Jackson R, Snetselaar L, Johnson KC, Eaton CB (2014) Biomarker-calibrated protein intake and bone health in the Women’s Health Initiative clinical trials and observational study. Am J Clin Nutr 99:934–940

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malmir H, Larijani B, Esmaillzadeh A (2020) Consumption of milk and dairy products and risk of osteoporosis and hip fracture: a systematic review and Meta-analysis. Crit Rev Food Sci Nutr 60:1722–1737

Article  PubMed  Google Scholar 

Sadeghi O, Djafarian K, Ghorabi S, Khodadost M, Nasiri M, Shab-Bidar S (2019) Dietary intake of fish, n-3 polyunsaturated fatty acids and risk of hip fracture: a systematic review and meta-analysis on observational studies. Crit Rev Food Sci Nutr 59:1320–1333

Article  CAS  PubMed  Google Scholar 

Wallace TC, Frankenfeld CL (2017) Dietary protein intake above the current RDA and bone health: a systematic review and meta-analysis. J Am Coll Nutr 36:481–496

Article  CAS  PubMed  Google Scholar 

Mangano KM, Sahni S, Kerstetter JE (2014) Dietary protein is beneficial to bone health under conditions of adequate calcium intake: an update on clinical research. Curr Opin Clin Nutr Metab Care 17:69–74

CAS  PubMed  PubMed Central  Google Scholar 

Hidayat K, Du X, Shi B-M, Qin L-Q (2020) Systematic review and meta-analysis of the association between dairy consumption and the risk of hip fracture: critical interpretation of the currently available evidence. Osteoporosis Int 31:1411–1425

Article  CAS  Google Scholar 

Mann CJ (2003) Observational research methods. Research design II: cohort, cross sectional, and case-control studies. Emerg Med J 20:54–60

Article  CAS  PubMed  PubMed Central  Google Scholar 

Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (2019) Cochrane handbook for systematic reviews of interventions. John Wiley & Sons

Book  Google Scholar 

Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE (2021) PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. Bmj 372:n160

Article  PubMed  PubMed Central  Google Scholar 

Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, Henry D, Altman DG, Ansari MT, Boutron I (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. Bmj 355:i4919

Article  PubMed  PubMed Central  Google Scholar 

Sterne JA, Hernán MA, McAleenan A, Reeves BC, Higgins JP (2019) Chapter 25: assessing risk of bias in a non-randomized study. In: Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons, Chichester, UK, pp 621–641

Symons M, Moore D (2002) Hazard rate ratio and prospective epidemiological studies. J Clin Epidemiol 55:893–899

Article  CAS  PubMed  Google Scholar 

Zhang J, Kai FY (1998) What’s the relative risk?: a method of correcting the odds ratio in cohort studies of common outcomes. JAMA 280:1690–1691

Article  CAS  PubMed  Google Scholar 

Greenland S, Longnecker MP (1992) Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 135:1301–1309

Article  CAS  PubMed  Google Scholar 

Orsini N, Bellocco R, Greenland S (2006) Generalized least squares for trend estimation of summarized dose–response data. Stand Genomic Sci 6:40–57

Google Scholar 

Talebi S, Zeraattalab-Motlagh S, Rahimlou M, Naeini F, Ranjbar M, Talebi A, Mohammadi H (2023) The association between total protein, animal protein, and animal protein sources with risk of inflammatory bowel diseases: a systematic review and meta-analysis of cohort studies. Adv Nutr 14:752–761

Article  PubMed  PubMed Central  Google Scholar 

Zeraattalab-Motlagh S, Jayedi A, Shab-Bidar S (2022) Mediterranean dietary pattern and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Nutr 61:1735–1748

Article  CAS  PubMed  Google Scholar 

Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. Bmj 327:557–560

Article  PubMed  PubMed Central  Google Scholar 

Hamling J, Lee P, Weitkunat R, Ambühl M (2008) Facilitating meta-analyses by deriving relative effect and precision estimates for alternative comparisons from a set of estimates presented by exposure level or disease category. Stat Med 27:954–970

Article  PubMed  Google Scholar 

Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harre FE Jr, Lee KL, Pollock BG (1988) Regression models in clinical studies: determining relationships between predictors and response. JNCI: J Nat Cancer Inst 80:1198–1202

Article  Google Scholar 

Crippa A, Discacciati A, Bottai M, Spiegelman D, Orsini N (2019) One-stage dose–response meta-analysis for aggregated data. Stat Methods Med Res 28:1579–1596

Article  PubMed  Google Scholar 

Neuenschwander M, Barbaresko J, Pischke CR, Iser N, Beckhaus J, Schwingshackl L, Schlesinger S (2020) Intake of dietary fats and fatty acids and the incidence of type 2 diabetes: a systematic review and dose-response meta-analysis of prospective observational studies. PLoS Med 17:e1003347

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif