A longitudinal genome-wide association study of bone mineral density mean and variability in the UK Biobank

Kanis JA (1997) Diagnosis of osteoporosis. Osteoporos Int 7(3):108–116. https://doi.org/10.1007/BF03194355

Article  Google Scholar 

Bonjour JP, Theintz G, Law F, Slosman D, Rizzoli R (1994) Peak bone mass. Osteoporosis Int 4(1):S7–S13. https://doi.org/10.1007/BF01623429

Article  Google Scholar 

Farr JN, Khosla S (2015) Skeletal changes through the lifespan–from growth to senescence. Nat Rev Endocrinol 11(9):513–21. https://doi.org/10.1038/nrendo.2015.89

Article  PubMed  PubMed Central  Google Scholar 

Richards JB, Zheng H-F, Spector TD (2012) Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat Rev Genet 13(8):576–588. https://doi.org/10.1038/nrg3228

Article  CAS  PubMed  Google Scholar 

Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19(4):385–397. https://doi.org/10.1007/s00198-007-0543-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arden NK, Baker J, Hogg C, Baan K, Spector TD (1996) The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res 11(4):530–534. https://doi.org/10.1002/jbmr.5650110414

Article  CAS  PubMed  Google Scholar 

Howard GM, Nguyen TV, Harris M, Kelly PJ, Eisman JA (1998) Genetic and environmental contributions to the association between quantitative ultrasound and bone mineral density measurements: a twin study. J Bone Mineral Res 13(8):1318–1327. https://doi.org/10.1359/jbmr.1998.13.8.1318

Article  CAS  Google Scholar 

Hunter DJ, de Lange M, Andrew T, Snieder H, MacGregor AJ, Spector TD (2001) genetic variation in bone mineral density and calcaneal ultrasound: a study of the influence of menopause using female twins. Osteoporos Int 12(5):406–411. https://doi.org/10.1007/s001980170110

Article  CAS  PubMed  Google Scholar 

Lee M, Czerwinski SA, Choh AC et al (2006) Unique and common genetic effects between bone mineral density and calcaneal quantitative ultrasound measures: the Fels Longitudinal Study. Osteoporos Int 17(6):865–871. https://doi.org/10.1007/s00198-006-0075-4

Article  CAS  PubMed  Google Scholar 

Zhu X, Bai W, Zheng H (2021) Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res 9(1):23. https://doi.org/10.1038/s41413-021-00143-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kemp JP, Morris JA, Medina-Gomez C et al (2017) Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat Genet 49(10):1468–1475. https://doi.org/10.1038/ng.3949

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morris JA, Kemp JP, Youlten SE et al (2019) An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet 51(2):258–266. https://doi.org/10.1038/s41588-018-0302-x

Article  CAS  PubMed  Google Scholar 

Justice AE, Howard AG, Chittoor G et al (2016) Genome-wide association of trajectories of systolic blood pressure change. BMC Proc 10(7):56. https://doi.org/10.1186/s12919-016-0050-9

Article  Google Scholar 

Couto Alves A, De Silva NMG, Karhunen V et al (2019) GWAS on longitudinal growth traits reveals different genetic factors influencing infant, child, and adult BMI. Sci Adv 5(9):eaaw3095. https://doi.org/10.1126/sciadv.aaw3095

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goldstein JA, Weinstock JS, Bastarache LA et al (2020) LabWAS: novel findings and study design recommendations from a meta-analysis of clinical labs in two independent biobanks. PLOS Genet 16(11):e1009077. https://doi.org/10.1371/journal.pgen.1009077

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henyš P, Vořechovský M, Kuchař M, Heinemann A, Kopal J, Ondruschka B, Hammer N (2021) Bone mineral density modeling via random field: normality, stationarity, sex and age dependence. Comput Methods Programs Biomed 210:106353. https://doi.org/10.1016/j.cmpb.2021.106353

Article  PubMed  Google Scholar 

Rothwell PM, Howard SC, Dolan E et al (2010) Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. The Lancet 375(9718):895–905. https://doi.org/10.1016/S0140-6736(10)60308-X

Article  Google Scholar 

Ivarsdottir EV, Steinthorsdottir V, Daneshpour MS et al (2017) Effect of sequence variants on variance in glucose levels predicts type 2 diabetes risk and accounts for heritability. Nat Genet 49(9):1398–1402. https://doi.org/10.1038/ng.3928

Article  CAS  PubMed  Google Scholar 

Ratti C, Vulcano E, Canton G, Marano M, Murena L, Cherubino P (2013) Factors affecting bone strength other than osteoporosis. Aging Clin Exp Res 25(1):9–11. https://doi.org/10.1007/s40520-013-0098-6

Article  Google Scholar 

Pitukcheewanont P, Austin J, Chen P, Punyasavatsut N (2013) Bone health in children and adolescents: risk factors for low bone density. Pediatr Endocrinol rev : PER 10(3):318–335

PubMed  Google Scholar 

Ko S, German CA, Jensen A et al (2022) GWAS of longitudinal trajectories at biobank scale. Am J Hum Genet 109(3):433–445. https://doi.org/10.1016/j.ajhg.2022.01.018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bycroft C, Freeman C, Petkova D et al (2018) The UK Biobank resource with deep phenotyping and genomic data. Nature 562(7726):203–209. https://doi.org/10.1038/s41586-018-0579-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

German CA, Sinsheimer JS, Zhou J, Zhou H (2022) WiSER: robust and scalable estimation and inference of within-subject variances from intensive longitudinal data. Biometrics 78(4):1313–1327. https://doi.org/10.1111/biom.13506

Article  PubMed  Google Scholar 

DayemUllah AZ, Lemoine NR, Chelala C (2013) A practical guide for the functional annotation of genetic variations using SNPnexus. Brief Bioinform 14(4):437–447. https://doi.org/10.1093/bib/bbt004

Article  CAS  Google Scholar 

Watanabe K, Taskesen E, van Bochoven A, Posthuma D (2017) Functional mapping and annotation of genetic associations with FUMA. Nat Commun 8(1):1826. https://doi.org/10.1038/s41467-017-01261-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kutmon M, Riutta A, Nunes N et al (2016) WikiPathways: capturing the full diversity of pathway knowledge. Nucleic Acids Res 44(D1):D488–D494. https://doi.org/10.1093/nar/gkv1024

Article  CAS  PubMed  Google Scholar 

Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27(12):1739–40. https://doi.org/10.1093/bioinformatics/btr260

Article  CAS  PubMed  PubMed Central  Google Scholar 

Estrada K, Styrkarsdottir U, Evangelou E et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44(5):491–501. https://doi.org/10.1038/ng.2249

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chesi A, Mitchell JA, Kalkwarf HJ et al (2015) A trans-ethnic genome-wide association study identifies gender-specific loci influencing pediatric aBMD and BMC at the distal radius. Hum Mol Genet 24(17):5053–5059. https://doi.org/10.1093/hmg/ddv210

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rivadeneira F, Styrkársdottir U, Estrada K et al (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41(11):1199–1206. https://doi.org/10.1038/ng.446

Article  CAS  PubMed  PubMed Central  Google Scholar 

Medina-Gomez C, Kemp JP, Estrada K et al (2012) Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. PLoS Genet 8(7):e1002718. https://doi.org/10.1371/journal.pgen.1002718

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng HF, Tobias JH, Duncan E et al (2012) WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet 8(7):e1002745. https://doi.org/10.1371/journal.pgen.1002745

Article  CAS  PubMed  PubMed Central  Google Scholar 

Määttä JA, Bendre A, Laanti M et al (2016) Fam3c modulates osteogenic cell differentiation and affects bone volume and cortical bone mineral density. Bonekey Rep 5:787. https://doi.org/10.1038/bonekey.2016.14

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kemp JP, Medina-Gomez C, Estrada K et al (2014) Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. PLoS Genet 10(6):e1004423.

留言 (0)

沒有登入
gif