Musashi-2 (MSI2) promotes neuroblastoma tumorigenesis through targeting MYC-mediated glucose-6-phosphate dehydrogenase (G6PD) transcriptional activation

Pinto NR, Applebaum MA, Volchenboum SL, Matthay KK, London WB, Ambros PF, et al. Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol. 2015;33(27):3008–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shimada H, Umehara S, Monobe Y, Hachitanda Y, Nakagawa A, Goto S, et al. International neuroblastoma pathology classification for prognostic evaluation of patients with peripheral neuroblastic tumors: a report from the Children’s Cancer Group. Cancer. 2001;92(9):2451–61.

Article  CAS  PubMed  Google Scholar 

DuBois SG, Kalika Y, Lukens JN, Brodeur GM, Seeger RC, Atkinson JB, et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol. 1999;21(3):181–9.

Article  CAS  PubMed  Google Scholar 

Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010;362(23):2202–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mora J, Cheung NKV, Gerald WL. Genetic heterogeneity and clonal evolution in neuroblastoma. Br J Cancer. 2001;85(2):182–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakamura M, Okano H, Blendy JA, Montell C. Musashi, a neural RNA-binding protein required for Drosophila adult external sensory organ development. Neuron. 1994;13(1):67–81.

Article  CAS  PubMed  Google Scholar 

Kudinov AE, Karanicolas J, Golemis EA, Boumber Y. Musashi RNA-binding proteins as cancer drivers and novel therapeutic targets. Clin Cancer Res. 2017;23(9):2143–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park SM, Deering RP, Lu Y, Tivnan P, Lianoglou S, Al-Shahrour F, et al. Musashi-2 controls cell fate, lineage bias, and TGF-beta signaling in HSCs. J Exp Med. 2014;211(1):71–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakakibara S, Nakamura Y, Yoshida T, Shibata S, Koike M, Takano H, et al. RNA-binding protein Musashi family: roles for CNS stem cells and a subpopulation of ependymal cells revealed by targeted disruption and antisense ablation. Proc Natl Acad Sci USA. 2002;99(23):15194–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang S, Li N, Yousefi M, Nakauka-Ddamba A, Li F, Parada K, et al. Transformation of the intestinal epithelium by the MSI2 RNA-binding protein. Nat Commun. 2015;6:6517.

Article  CAS  PubMed  Google Scholar 

Zhu Y, Zhou B, Hu X, Ying S, Zhou Q, Xu W, et al. LncRNA LINC00942 promotes chemoresistance in gastric cancer by suppressing MSI2 degradation to enhance c-Myc mRNA stability. Clin Transl Med. 2022;12(1):e703.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qu C, He L, Yao N, Li JY, Jiang YCA, Li BK, et al. Myofibroblast-specific Msi2 knockout inhibits HCC progression in a mouse model. Hepatology. 2021;74(1):458–73.

Article  CAS  PubMed  Google Scholar 

Dong WW, Liu XB, Yang CQ, Wang D, Xue YX, Ruan XL, et al. Glioma glycolipid metabolism: MSI2-SNORD12B-FIP1L1-ZBTB4 feedback loop as a potential treatment target. Clin Transl Med. 2021;11(5):e411.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hattori A, McSkimming D, Kannan N, Ito T. RNA binding protein MSI2 positively regulates FLT3 expression in myeloid leukemia. Leukemia Res. 2017;54:47–54.

Article  CAS  Google Scholar 

Hattori A, Tsunoda M, Konuma T, Kobayashi M, Nagy T, Glushka J, et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature. 2017;545(7655):500–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Makhov P, Bychkov I, Faezov B, Deneka A, Kudinov A, Nicolas E, et al. Musashi-2 (MSI2) regulates epidermal growth factor receptor (EGFR) expression and response to EGFR inhibitors in EGFR-mutated non-small cell lung cancer (NSCLC). Oncogenesis. 2021;10(3):29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heiden MGV, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.

Article  Google Scholar 

Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9.

Article  CAS  PubMed  Google Scholar 

Wamelink M, Struys E, Jakobs C. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. J Inherit Metab Dis. 2008;31(6):703–17.

Article  CAS  PubMed  Google Scholar 

Jiang P, Du WJ, Wu MA. Regulation of the pentose phosphate pathway in cancer. Protein Cell. 2014;5(8):592–602.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bose S, Huang Q, Ma Y, Wang L, Rivera GO, Ouyang Y, et al. G6PD inhibition sensitizes ovarian cancer cells to oxidative stress in the metastatic omental microenvironment. Cell Rep. 2022;39(13):111012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aurora AB, Khivansara V, Leach A, Gill JG, Martin-Sandoval M, Yang CD, et al. Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells. Proc Natl Acad Sci USA. 2022;119(6):e2120617119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang P, Huang M, Qi WW, Wang FH, Yang TY, Gao TX, et al. FUBP1 promotes neuroblastoma proliferation via enhancing glycolysis-a new possible marker of malignancy for neuroblastoma. J Exp Clin Canc Res. 2019;38(1):400.

Article  Google Scholar 

Qiu B, Matthay KK. Advancing therapy for neuroblastoma. Nat Rev Clin Oncol. 2022;19(8):515–33.

Article  CAS  PubMed  Google Scholar 

Chen YY, Takita J, Choi YL, Kato M, Ohira M, Sanada M, et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature. 2008;455(7215):971–4.

Article  CAS  PubMed  Google Scholar 

Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, et al. The genetic landscape of high-risk neuroblastoma. Nat Genet. 2013;45(3):279–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ponzoni M, Bachetti T, Corrias MV, Brignole C, Pastorino F, Calarco E, et al. Recent advances in the developmental origin of neuroblastoma: an overview. J Exp Clin Cancer Res. 2022;41(1):92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang PL, Teng L, Feng YC, Yue YM, Han MM, Yan Q, et al. The N-Myc-responsive lncRNA MILIP promotes DNA double-strand break repair through non-homologous end joining. Proc Natl Acad Sci USA. 2022;119(49):e2208904119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grunblatt E, Wu N, Zhang H, Liu X, Norton JP, Ohol Y, et al. MYCN drives chemoresistance in small cell lung cancer while USP7 inhibition can restore chemosensitivity. Genes Dev. 2020;34(17–18):1210–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kharas MG, Lengner CJ. Stem cells, cancer, and MUSASHI in blood and guts. Trends Cancer. 2017;3(5):347–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov. 2022;21(2):141–62.

Article  CAS  PubMed  Google Scholar 

Wu S, Wang H, Li Y, Xie Y, Huang C, Zhao H, et al. Transcription factor YY1 promotes cell proliferation by directly activating the pentose phosphate pathway. Cancer Res. 2018;78(16):4549–62.

Article  CAS  PubMed  Google Scholar 

Ding H, Chen Z, Wu K, Huang SM, Wu WL, LeBoeuf SE, et al. Activation of the NRF2 antioxidant program sensitizes tumors to G6PD inhibition. Sci Adv. 2021;7(47):eabk1023.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang R, Tao F, Ruan S, Hu M, Hu Y, Fang Z, et al. The TGFbeta1-FOXM1-HMGA1-TGFbeta1 positive feedback loop increases the cisplatin resistance of non-small cell lung cancer by inducing G6PD expression. Am J Transl Res. 2019;11(11):6860–76.

CAS  PubMed  PubMed Central  Google Scholar 

Yin X, Tang B, Li JH, Wang Y, Zhang L, Xie XY, et al. ID1 promotes hepatocellular carcinoma proliferation and confers chemoresistance to oxa

留言 (0)

沒有登入
gif