Extended-spectrum β-lactamase- producing gram-negative bacterial infections in severely ill COVID-19 patients admitted in a national referral hospital, Kenya

Gu W, et al. The molecular mechanism of SARS-CoV-2 evading host antiviral innate immunity. Virol J. 2022;19(1):49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deinhardt-Emmer S, et al. SARS-CoV-2 causes severe epithelial inflammation and barrier dysfunction. J Virol. 2021;95(10):e00110-e121.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cyprian F, et al. SARS-CoV-2 and immune-microbiome interactions: lessons from respiratory viral infections. Int J Infect Dis. 2021;105:540–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sahu C, et al. Bacterial coinfections in COVID: Prevalence, antibiotic sensitivity patterns and clinical outcomes from a tertiary institute of Northern India. J Fam Med Prim care. 2022;11(8):4473–8.

Article  Google Scholar 

Alqahtani A, et al. Bacterial coinfections increase mortality of severely Ill COVID-19 patients in Saudi Arabia. Int J Environ Res Public Health. 2022;19(4):2424.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cogliati Dezza F, et al. Clinical impact of COVID-19 on multi-drug-resistant gram-negative bacilli bloodstream infections in an intensive care unit setting: two pandemics compared. Antibiotics. 2022;11(7):926.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mai HTT, Espinoza JL. The impact of COVID-19 pandemic on ESBL-producing enterobacterales infections: a scoping review. Antibiotics. 2023;12(6):1064.

Article  PubMed  PubMed Central  Google Scholar 

Eaton L. Antimicrobial use in the pandemic. Bull World Heal Organ. 2022;100(5):298–9.

Article  Google Scholar 

Aurilio C, et al. Mechanisms of action of carbapenem resistance. Antibiotics. 2022;11(3):421.

Article  CAS  PubMed  PubMed Central  Google Scholar 

León-Sampedro R, et al. Pervasive transmission of a carbapenem resistance plasmid in the gut microbiota of hospitalized patients. Nat Microbiol. 2021;6(5):606–16.

Article  PubMed  PubMed Central  Google Scholar 

Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC-antimicrobial Resist. 2021;3(3):dlab092.

Article  Google Scholar 

Yang Y-Q, et al. Co-occurrence of mcr-1 and ESBL on a single plasmid in Salmonella enterica. J Antimicrob Chemother. 2016;71(8):2336–8.

Article  CAS  PubMed  Google Scholar 

Caspar Y, et al. mcr-1 colistin resistance in ESBL-producing Klebsiella pneumoniae, France. Emerg Infect Dis. 2017;23(5):874.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wangkheimayum J, et al. Occurrence of diverse aminoglycoside modifying enzymes with co-existing extended-spectrum-β-lactamases within Enterobacteriaceae isolated in India. J Glob Antimicrob Resist. 2020;21:369–74.

Article  PubMed  Google Scholar 

Salah FD, et al. Distribution of quinolone resistance gene (qnr) in ESBL-producing Escherichia coli and Klebsiella spp. in Lomé, Togo. Antimicrob Resist Infect Control. 2019;8:1–8.

Article  CAS  Google Scholar 

Canton R, Morosini MI, Martin O, De la Maza S, De La Pedrosa EGG. IRT and CMT β-lactamases and inhibitor resistance. Clin Microbiol Infect. 2008;14:53–62.

Article  CAS  PubMed  Google Scholar 

Moirongo RM, et al. Regional variation of extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales, fluoroquinolone-resistant Salmonella enterica and methicillin-resistant Staphylococcus aureus among febrile patients in sub-Saharan Africa. Front Microbiol. 2020;11: 567235.

Article  PubMed  PubMed Central  Google Scholar 

Del Sole F, et al. Features of severe COVID‐19: a systematic review and meta‐analysis. Eur J Clin Invest, 2020;50(10), e13378.

WHO. Clinical care severe acute respiratory infection. Toolkit: COVID-19 adaptation. Geneva: World Healt Organisation; 2022.

Google Scholar 

Swaminathan S, Balaji V, Parija SC, Kapil A, Gautam V, Ray P. Standard operating procedures bacteriology antimicrobial resistance surveillance and research network. New Delhi: ICMR; 2015.

Google Scholar 

Weistein M, et al. M100 Performance Standards for Antimicrobial. Wayne: Clinical Laboratory Standard Institute; 2021.

Google Scholar 

Kiiru J, Kariuki S, Goddeeris BM, Butaye P. Analysis of β-lactamase phenotypes and carriage of selected β-lactamase genes among Escherichia coli strains obtained from Kenyan patients during an 18-year period. BMC Microbiol. 2012;12(1):1–11.

Article  Google Scholar 

Wanja FK, Omwenga EO, Ngugi CW, Maina JN, Kiiru JN. Genotypic characterization of urinary tract infections causing bacteria isolates among adults at Kiambu level 5 hospital, Kenya: selected extended spectrum β-lactamase genes and biofilm formation. MedRxiv. 2022;2(5):1.

Google Scholar 

Maina J, Ndung’u P, Muigai A, Kiiru J. Antimicrobial resistance profiles and genetic basis of resistance among non-fastidious gram-negative bacteria recovered from ready-to-eat foods in Kibera informal housing in Nairobi. Kenya Access Microbiol. 2021;3(6):000236. https://doi.org/10.1099/acmi.0.000236.

Article  CAS  PubMed  Google Scholar 

Uwizeyimana JD, Kim D, Lee H, Byun JH, Yong D. Determination of colistin resistance by simple disk diffusion test using modified Mueller-Hinton agar. Ann Lab Med. 2020;40(4):306–11. https://doi.org/10.3343/alm.2020.40.4.306.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang M, et al. Analysis of multidrug-resistant bacteria in 3223 patients with hospital-acquired infections (HAI) from a tertiary general hospital in China. Bosn J basic Med Sci. 2019;19(1):86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lemenand O, Coeffic T, Thibaut S, Cotinat MC, Caillon J, Birgand G. Decreasing proportion of extended-spectrum beta-lactamase among E. coli infections during the COVID-19 pandemic in France. J Infect. 2021;83(6):664–70.

Article  CAS  PubMed  Google Scholar 

Karataş M, Yaşar-Duman M, Tünger A, Çilli F, Aydemir Ş, Özenci V. Secondary bacterial infections and antimicrobial resistance in COVID-19: comparative evaluation of pre-pandemic and pandemic-era, a retrospective single center study. Ann Clin Microbiol Antimicrob. 2021;20:1–8.

Article  Google Scholar 

Sonda T, et al. Meta-analysis of proportion estimates of Extended-Spectrum-Beta-Lactamase-producing Enterobacteriaceae in East Africa hospitals. Antimicrob Resist Infect Control. 2016;5(1):1–9.

Article  Google Scholar 

Tornberg-Belanger SN, et al. Antimicrobial resistance including extended spectrum beta lactamases (ESBL) among E. coli isolated from kenyan children at hospital discharge. PLoS Negl Trop Dis. 2022;16(3):e0010283. https://doi.org/10.1371/journal.pntd.0010283.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diriba K, Awulachew E, Gemede A, Anja A. The magnitude of extended-spectrum beta-lactamase-producing Enterobacteriaceae from clinical samples in Ethiopia: a systematic review and meta-analysis. Access Microbiol. 2021;3(3):000195.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kateregga JN, Kantume R, Atuhaire C, Lubowa MN, Ndukui JG. Phenotypic expression and prevalence of ESBL-producing Enterobacteriaceae in samples collected from patients in various wards of Mulago Hospital, Uganda. BMC Pharmacol Toxicol. 2015;16:1–6.

Article  CAS  Google Scholar 

Alsamawi M, et al. Epidemiology of extended-spectrum beta-lactamase producing Enterobacteriaceae in Qatar: a three-year hospital-based study. Front Antibiot. 2022;7(1):980686.

Article  Google Scholar 

Li Z, et al. High Carriage of Extended-Spectrum, Beta Lactamase-Producing, and Colistin-Resistant Enterobacteriaceae in Tibetan Outpatients with Diarrhea. Antibiotics. 2022;11(4):508.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larsson DGJ, Flach C-F. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022;20(5):257–69.

Article  CAS  PubMed  Google Scholar 

Aleem A, Samad ABA, Slenker AK. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19). Treasure Island: StatPearls Publishing; 2021.

Google Scholar 

Emeraud C, et al. Outbreak of CTX-M-15 extended-spectrum β-lactamase-producing Klebsiella pneumoniae ST394 in a French intensive care unit dedicated to COVID-19. Pathog. 2021;10(11):1426. https://doi.org/10.3390/pathogens10111426.

Article  CAS  Google Scholar 

Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother. 2017;72(8):2145–55.

Article  CAS  PubMed  Google Scholar 

Tacconelli E, et al. Analysis of the challenges in implementing guidelines to prevent the spread of multidrug-resistant gram-negatives in Europe. BMJ Open. 2019;9(5): e027683.

Article  PubMed  PubMed Central  Google Scholar 

Gutiérrez-Gutiérrez B, Rodríguez-Baño J. Current options for the treatment of infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae in different groups of patients. Clin Microbiol Infect. 2019;25(8):932–42.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif