Research progress on multiple cell death pathways of podocytes in diabetic kidney disease

Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12:2032–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altintas MM, Reiser J. Podocytes: way to go. Am J Pathol. 2019;189:226–8.

Article  PubMed  Google Scholar 

American DA. Standards of medical care in diabetes. Diabetes Care. 2005;28(Suppl 1):S4–36.

Article  Google Scholar 

Anil Kumar P, Welsh GI, Saleem MA, Menon RK. Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus. Front Endocrinol (lausanne). 2014;5:151.

Article  CAS  PubMed  Google Scholar 

Bai X, Geng J, Li X, et al. Long noncoding RNA LINC01619 regulates microRNA-27a/Forkhead box protein o1 and endoplasmic reticulum stress-mediated podocyte injury in diabetic nephropathy. Antioxid Redox Signal. 2018;29:355–76.

Article  CAS  PubMed  Google Scholar 

Barutta F, Bellini S, Gruden G. Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci (lond). 2022;136:493–520.

Article  PubMed  Google Scholar 

Benzing T, Salant D. Insights into glomerular filtration and albuminuria. N Engl J Med. 2021;384:1437–46.

Article  CAS  PubMed  Google Scholar 

Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14:359–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bork T, Liang W, Yamahara K, et al. Podocytes maintain high basal levels of autophagy independent of mtor signaling. Autophagy. 2020;16:1932–48.

Article  CAS  PubMed  Google Scholar 

Brosius FC, Tuttle KR, Kretzler M. JAK inhibition in the treatment of diabetic kidney disease. Diabetologia. 2016;59:1624–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burrows NR, Cho P, McKeever Bullard K, Narva AS, Eggers PW. Survival on dialysis among American Indians and Alaska Natives with diabetes in the United States, 1995–2010. Am J Public Health. 2014;104(Suppl 3):S490-495.

Article  PubMed  PubMed Central  Google Scholar 

Cao Y, Hao Y, Li H, et al. Role of endoplasmic reticulum stress in apoptosis of differentiated mouse podocytes induced by high glucose. Int J Mol Med. 2014;33:809–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao Z, Huang D, Tang C, et al. Pyroptosis in diabetes and diabetic nephropathy. Clin Chim Acta. 2022;531:188–96.

Article  CAS  PubMed  Google Scholar 

Castedo M, Perfettini J-L, Roumier T, Andreau K, Medema R, Kroemer G. Cell death by mitotic catastrophe: a molecular definition. Oncogene. 2004;23:2825–37.

Article  CAS  PubMed  Google Scholar 

Castrop H, Schießl IM. Novel routes of albumin passage across the glomerular filtration barrier. Acta Physiol (Oxf). 2017;219:544–53.

Article  CAS  PubMed  Google Scholar 

Chen J, Chen J-K, Harris RC. EGF receptor deletion in podocytes attenuates diabetic nephropathy. J Am Soc Nephrol. 2015;26:1115–25.

Article  CAS  PubMed  Google Scholar 

Chen A, Feng Y, Lai H, et al. Soluble RARRES1 induces podocyte apoptosis to promote glomerular disease progression. J Clin Invest. 2020;130:5523–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen J, Ou Z, Gao T, et al. Ginkgolide B alleviates oxidative stress and ferroptosis by inhibiting GPX4 ubiquitination to improve diabetic nephropathy. Biomed Pharmacother. 2022;156: 113953.

Article  CAS  PubMed  Google Scholar 

Cheng Q, Pan J, Zhou Z-L, et al. Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy. Acta Pharmacol Sin. 2021;42:954–63.

Article  CAS  PubMed  Google Scholar 

Chung H, Lee S-W, Hyun M, et al. Curcumin blocks high glucose-induced podocyte injury via RIPK3-dependent pathway. Front Cell Dev Biol. 2022;10: 800574.

Article  PubMed  PubMed Central  Google Scholar 

Cunard R, Sharma K. The endoplasmic reticulum stress response and diabetic kidney disease. Am J Physiol Renal Physiol. 2011;300:F1054-1061.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai H, Liu Q, Liu B. Research progress on mechanism of podocyte depletion in diabetic nephropathy. J Diabetes Res. 2017;2017:2615286.

Article  PubMed  PubMed Central  Google Scholar 

D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43:582–92.

Article  PubMed  Google Scholar 

Denhez B, Lizotte F, Guimond M-O, Jones N, Takano T, Geraldes P. Increased SHP-1 protein expression by high glucose levels reduces nephrin phosphorylation in podocytes. J Biol Chem. 2015;290:350–8.

Article  CAS  PubMed  Google Scholar 

Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation. 2018;15:199.

Article  PubMed  PubMed Central  Google Scholar 

Ding X, Jing N, Shen A, et al. MiR-21-5p in macrophage-derived extracellular vesicles affects podocyte pyroptosis in diabetic nephropathy by regulating A20. J Endocrinol Invest. 2021;44:1175–84.

Article  CAS  PubMed  Google Scholar 

Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33–42.

Article  CAS  PubMed  Google Scholar 

Dusabimana T, Park EJ, Je J, et al. Geniposide improves diabetic nephropathy by enhancing ULK1-mediated autophagy and reducing oxidative stress through AMPK activation. Int J Mol Sci. 2021;22:1651.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eisenreich A, Leppert U. Update on the protective renal effects of metformin in diabetic nephropathy. Curr Med Chem. 2017;24:3397–412.

Article  CAS  PubMed  Google Scholar 

Erekat NS. Cerebellar Purkinje cells die by apoptosis in the shaker mutant rat. Brain Res. 2017;1657:323–32.

Article  CAS  PubMed  Google Scholar 

Erekat NS. Programmed cell death in cerebellar Purkinje neurons. J Integr Neurosci. 2022a;21:30.

Article  PubMed  Google Scholar 

Erekat NS. Apoptosis and its therapeutic implications in neurodegenerative diseases. Clin Anat. 2022b;35:65–78.

Article  PubMed  Google Scholar 

Erekat NS. Programmed cell death in diabetic nephropathy: a review of apoptosis, autophagy, and necroptosis. Med Sci Monit. 2022;28:e937766-937761–937712.

Fan Y, Lee K, Wang N, He JC. The role of endoplasmic reticulum stress in diabetic nephropathy. Curr Diab Rep. 2017a;17:17.

Article  PubMed  Google Scholar 

Fan Y, Zhang J, Xiao W, et al. Rtn1a-mediated endoplasmic reticulum stress in podocyte injury and diabetic nephropathy. Sci Rep. 2017b;7:323.

Article  PubMed  PubMed Central  Google Scholar 

Fan Y, Yang Q, Yang Y, et al. Sirt6 suppresses high glucose-induced mitochondrial dysfunction and apoptosis in podocytes through AMPK activation. Int J Biol Sci. 2019;15:701–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fantuzzi G, Dinarello CA. Interleukin-18 and interleukin-1 beta: two cytokine substrates for ICE (caspase-1). J Clin Immunol. 1999;19:1–11.

Article  CAS  PubMed  Google Scholar 

Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16:1180–91.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif