Genetic and Gene Expression Resources for Osteoporosis and Bone Biology Research

Wu AM, Bisignano C, James SL, Abady GG, Abedi A, Abu-Gharbieh E, et al. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the global burden of disease study 2019. Lancet Heal Longev. 2021;2. https://doi.org/10.1016/S2666-7568(21)00172-0.

Cauley JA. Public health impact of osteoporosis. J Gerontol - Ser A Biol Sci Med Sci. 2013;68. https://doi.org/10.1093/gerona/glt093.

Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22:465–75. https://doi.org/10.1359/jbmr.061113.

Article  PubMed  Google Scholar 

Cummings SR. Appendicular bone density and age predict hip fracture in women. The study of osteoporotic fractures research group. JAMA J Am Med Assoc. 1990;263:665–8. https://doi.org/10.1001/jama.263.5.665.

Article  CAS  Google Scholar 

Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20. https://doi.org/10.1359/JBMR.050304.

Cranney A, Jamal SA, Tsang JF, Josse RG, Leslie WD. Low bone mineral density and fracture burden in postmenopausal women. C Can Med Assoc J. 2007;177. https://doi.org/10.1503/cmaj.070234.

Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, et al. Hip Fracture in Women without Osteoporosis. J Clin Endocrinol Metab. 2005;90:2787–93.

Article  CAS  PubMed  Google Scholar 

Samelson EJ, Broe KE, Xu H, Yang L, Boyd S, Biver E, et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol. 2019;7:34–43. https://doi.org/10.1016/S2213-8587(18)30308-5.

Article  PubMed  Google Scholar 

Whittier DE, Samelson EJ, Hannan MT, Burt LA, Hanley DA, Biver E, et al. Bone Microarchitecture Phenotypes Identified in Older Adults Are Associated With Different Levels of Osteoporotic Fracture Risk. J Bone Miner Res. 2022;37:428–39. https://doi.org/10.1002/jbmr.4494.

Article  CAS  PubMed  Google Scholar 

Evans DS. Target discovery for drug development using Mendelian Randomization. Methods Mol Biol. 2022;2547:1–20. https://doi.org/10.1007/978-1-0716-2573-6_1.

Article  CAS  PubMed  Google Scholar 

Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets through human genetics. Nat Rev Drug Discov. 2013;12:581–94. https://doi.org/10.1038/nrd4051.

Article  CAS  PubMed  Google Scholar 

Fang H, Beckmann G, Bountra C, Bowness P, Burgess-Brown N, Carpenter L, et al. A genetics-led approach defines the drug target landscape of 30 immune-related traits. Nat Genet. 2019;51:1082–91. https://doi.org/10.1038/S41588-019-0456-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Plenge RM. Priority index for human genetics and drug discovery. Nat Genet. 2019;51:1073–5. https://doi.org/10.1038/S41588-019-0460-5.

Article  CAS  PubMed  Google Scholar 

Estrada K, Froelich S, Wuster A, Bauer CR, Sterling T, Clark WT, et al. Identifying therapeutic drug targets using bidirectional effect genes. Nat Commun. 2021;12. https://doi.org/10.1038/S41467-021-21843-8.

Sanseau P, Agarwal P, Barnes MR, Pastinen T, Richards JB, Cardon LR, et al. Use of genome-wide association studies for drug repositioning. Nat Biotechnol. 2012;30:317–20. https://doi.org/10.1038/NBT.2151.

Article  CAS  PubMed  Google Scholar 

Ghoussaini M, Mountjoy E, Carmona M, Peat G, Schmidt EM, Hercules A, et al. Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics. Nucleic Acids Res. 2021;49:D1311–20. https://doi.org/10.1093/NAR/GKAA840.

Article  CAS  PubMed  Google Scholar 

Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, et al. The support of human genetic evidence for approved drug indications. Nat Genet. 2015;47:856–60. https://doi.org/10.1038/ng.3314.

Article  CAS  PubMed  Google Scholar 

Sollis E, Mosaku A, Abid A, Buniello A, Cerezo M, Gil L, et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 2023;51:D977–85. https://doi.org/10.1093/NAR/GKAC1010.

Article  CAS  PubMed  Google Scholar 

Zhu X, Bai W, Zheng H. Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res. 2021;9. https://doi.org/10.1038/s41413-021-00143-3.

Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101. https://doi.org/10.1016/j.ajhg.2017.06.005.

Nicolae DL, Gamazon E, Zhang W, Duan S, Eileen Dolan M, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLOS Genet. 2010;6:e1000888. https://doi.org/10.1371/JOURNAL.PGEN.1000888.

Article  PubMed  PubMed Central  Google Scholar 

Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations with regulatory information in the human genome. Genome Res. 2012;22. https://doi.org/10.1101/gr.136127.111.

Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40. https://doi.org/10.1093/nar/gkr917.

Gallagher MD, Chen-Plotkin AS. The Post-GWAS Era: from association to function. Am J Hum Genet. 2018;102. https://doi.org/10.1016/j.ajhg.2018.04.002.

Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira AN, Knowles DA, Golan D, et al. Opportunities and challenges for transcriptome-wide association studies. Nat Genet. 2019;51. https://doi.org/10.1038/s41588-019-0385-z.

Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, et al. Genetics of gene expression and its effect on disease. Nature 2008;452. https://doi.org/10.1038/nature06758.

Aguet F, Barbeira AN, Bonazzola R, Brown A, Castel SE, Jo B, et al. The GTEx consortium atlas of genetic regulatory effects across human tissues. Science (80- ). 2020;369. https://doi.org/10.1126/SCIENCE.AAZ1776.

Calabrese GM, Mesner LD, Stains JP, Tommasini SM, Horowitz MC, Rosen CJ, et al. Integrating GWAS and Co-expression Network Data Identifies Bone Mineral Density Genes SPTBN1 and MARK3 and an Osteoblast Functional Module. Cell Syst. 2017;4:46-59.e4. https://doi.org/10.1016/j.cels.2016.10.014.

Article  CAS  PubMed  Google Scholar 

Hsu YH, Zillikens MC, Wilson SG, Farber CR, Demissie S, Soranzo N, et al. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility loci for osteoporosis-related traits. PLoS Genet. 2010;6. https://doi.org/10.1371/journal.pgen.1000977.

Al-Barghouthi BM, Mesner LD, Calabrese GM, Brooks D, Tommasini SM, Bouxsein ML, et al. Systems genetics in diversity outbred mice inform BMD GWAS and identify determinants of bone strength. Nat Commun 2021;12. https://doi.org/10.1038/S41467-021-23649-0.

•• Kaya S, Schurman CA, Dole NS, Evans DS, Alliston T. Prioritization of Genes Relevant to Bone Fragility Through the Unbiased Integration of Aging Mouse Bone Transcriptomics and Human GWAS Analyses. J Bone Miner Res. 2022;37:804–17. https://doi.org/10.1002/jbmr.4516An important mouse transcriptomics and human GWAS study generated interactive, easy to use www.mouse2human.org which provides gene-based scores to prioritize mouse and human genes based on their relevance to human eBMD, fracture and osteoarthritis.

Kiel DP, Demissie S, Dupuis J, Lunetta KL, Murabito JM, Karasik D. Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genet. 2007;8. https://doi.org/10.1186/1471-2350-8-S1-S14.

Trajanoska K, Morris JA, Oei L, Zheng H-F, Evans DM, Kiel DP, et al. Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study. BMJ. 2018;362:k3225. https://doi.org/10.1136/bmj.k3225.

Article  PubMed  PubMed Central  Google Scholar 

• Morris JA, Kemp JP, Youlten SE, Laurent L, Logan JG, Chai RC, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. 2019;51:258–66. https://doi.org/10.1038/s41588-018-0302-x. An important human genome-wide association study utilizing UK Biobank with 500,000 participants identified 518 significant loci associated with eBMD and 13 loci associated with fracture.

Baird DA, Evans DS, Kamanu FK, Gregory JS, Saunders FR, Giuraniuc CV, et al. Identification of Novel Loci Associated With Hip Shape: A Meta-Analysis of Genomewide Association Studies. J Bone Miner Res. 2019;34. https://doi.org/10.1002/jbmr.3605.

Styrkarsdottir U, Stefansson OA, Gunnarsdottir K, Thorleifsson G, Lund SH, Stefansdottir L, et al. GWAS of bone size yields twelve loci that also affect height, BMD, osteoarthritis or fractures. Nat Commun 2019;10. https://doi.org/10.1038/s41467-019-09860-0.

Hsu Y-H, Estrada K, Evangelou E, Ackert-Bicknell C, Akesson K, Beck T, et al. Meta-Analysis of Genomewide Association Studies Reveals Genetic Variants for Hip Bone Geometry. J Bone Miner Res. 2019;34:1284–96. https://doi.org/10.1002/jbmr.3698.

Article  CAS  PubMed  Google Scholar 

Paternoster L, Lorentzon M, Vandenput L, Karlsson MK, Ljunggren Ö, Kindmark A, et al. Genome-wide association meta-analysis of cortical bone mineral density unravels allelic heterogeneity at the RANKL locus and potential Pleiotropic effects on bone. PLoS Genet. 2010;6. https://doi.org/10.1371/journal.pgen.1001217.

Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR, Chakravarti A, et al. A global reference for human genetic variation. Nature 2015;526. https://doi.org/10.1038/nature15393.

McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–83. https://doi.org/10.1038/ng.3643.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-base platform supports systematic causal inference across the human phenome. Elife 2018;7. https://doi.org/10.7554/eLife.34408.

Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47. https://doi.org/10.1038/ng.3406.

Demange PA, Malanchini M, Mallard TT, Biroli P, Cox SR, Grotzinger AD, et al. Investigating the genetic architecture of noncognitive skills using GWAS-by-subtraction. Nat Genet. 2021;53. https://doi.org/10.1038/s41588-020-00754-2.

Gamazon ER, Wheeler HE, Shah KP, Mozaffari S V., Aquino-Michaels K, Carroll RJ, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47. https://doi.org/10.1038/ng.3367.

• Lu T, Forgetta V, Greenwood CMT, Richards JB. Identifying causes of fracture beyond bone mineral density: evidence from human genetics. J Bone Miner Res. 2022;37. https://doi.org/10.1002/jbmr.4632.This study identified genetic variants potentially associated with fracture independently of BMD using the GWAS results of fracture, eBMD and BMD at the femoral neck and lumbar spine.

Ioannidis JPA, Tarone R, McLaughlin JK. The False-positive to False-negative Ratio in Epidemiologic Studies. Epidemiology. 2011;22:450–6. https://doi.org/10.1097/EDE.0b013e31821b506e.

Article  PubMed  Google Scholar 

Grundberg E, Kwan T, Ge B, Lam KCL, Koka V, Kindmark A, et al. Population genomics in a disease targeted primary cell model. Genome Res. 2009;19:1942–52. https://doi.org/10.1101/gr.095224.109.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mullin BH, Zhu K, Xu J, Brown SJ, Mullin S, Tickner J, et al. Expression Quantitative Trait Locus Study of Bone Mineral Density GWAS Variants in Human Osteoclasts. J Bone Miner Res. 2018;33:1044–51. https://doi.org/10.1002/jbmr.3412.

Article  CAS  PubMed  Google Scholar 

Mullin BH, Zhu K, Brown SJ, Mullin S, Tickner J, Pavlos NJ, et al. Genetic regulatory mechanisms in human osteoclasts suggest a role for the STMP1 and DCSTAMP genes in Paget’s disease of bone. Sci Rep. 2019;9. https://doi.org/10.1038/s41598-018-37609-0.

Mullin BH, Tickner J, Zhu K, Kenny J, Mullin S, Brown SJ, et al. Characterisation of genetic regulatory effects for osteoporosis risk variants in human osteoclasts. Genome Biol. 2020;21. https://doi.org/10.1186/s13059-020-01997-2.

Reppe S, Datta HK, Gautvik KM. Omics analysis of human bone to identify genes and molecular networks regulating skeletal remodeling in health and disease. Bone 2017;101. https://doi.org/10.1016/j.bone.2017.04.012.

Reppe S, Refvem H, Gautvik VT, Olstad OK, Høvring PI, Reinholt FP, et al. Eight genes are highly associated with BMD variation in postmenopausal Caucasian women. Bone. 2010;46:604–12. https://doi.org/10.1016/j.bone.2009.11.007.

Article  CAS  PubMed  Google Scholar 

Jemtland R, Holden M, Reppe S, Olstad OK, Reinholt FP, Gautvik VT, et al. Molecular disease map of bone characterizing the postmenopausal osteoporosis phenotype. J Bone Miner Res. 2011;26:1793–801. https://doi.org/10.1002/jbmr.396.

Article  CAS  PubMed  Google Scholar 

Farr JN, Roforth MM, Fujita K, Nicks KM, Cunningham JM, Atkinson EJ, et al. Effects of age and estrogen on skeletal gene expression in humans as assessed by RNA sequencing. PLoS ONE. 2015;10:1–22. https://doi.org/10.1371/journal.pone.0138347.

Article  CAS  Google Scholar 

Weivoda MM, Chew CK, Monroe DG, Farr JN, Atkinson EJ, Geske JR, et al. Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. Nat Commun. 2020;11.

留言 (0)

沒有登入
gif