InP colloidal quantum dots for visible and near-infrared photonics

Dingle, R., Wiegmann, W. & Henry, C. H. Quantum states of confined carriers in very thin AlxGa1−xAs-GaAs-AlxGa1−xAs heterostructures. Phys. Rev. Lett. 33, 827–830 (1974).

Article  CAS  Google Scholar 

Sakaki, H. Scattering suppression and high-mobility effect of size-quantized electrons in ultrafine semiconductor wire structures. Jpn. J. Appl. Phys. 19, 735–738 (1980).

Article  Google Scholar 

Ekimov, A. & Onushchenko, A. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 34, 345 (1981).

Google Scholar 

Efros, A. L. & Efros, A. L. Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 16, 772–775 (1982).

Google Scholar 

Brus, L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 79, 5566–5571 (1983).

Article  CAS  Google Scholar 

Brus, L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).

Article  CAS  Google Scholar 

Meyer, M., Wallberg, C., Kurihara, K. & Fendler, J. H. Photosensitized charge separation and hydrogen production in reversed micelle entrapped platinized colloidal cadmium sulphide. J. Chem. Soc. Chem. Commun. 2, 90–91 (1984).

Article  Google Scholar 

Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

Article  CAS  Google Scholar 

Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

Article  CAS  Google Scholar 

Calvin, J. J., Brewer, A. S. & Alivisatos, A. P. The role of organic ligand shell structures in colloidal nanocrystal synthesis. Nat. Synth. 1, 127–137 (2022).

Article  Google Scholar 

Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012–1057 (2015).

Article  CAS  Google Scholar 

Efros, A. L. & Brus, L. E. Nanocrystal quantum dots: from discovery to modern development. ACS Nano 15, 6192–6210 (2021).

Article  CAS  Google Scholar 

Pietryga, J. M. et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).

Article  CAS  Google Scholar 

García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).

Article  Google Scholar 

Liu, M. et al. Colloidal quantum dot electronics. Nat. Electron. 4, 548–558 (2021).

Article  Google Scholar 

Rhee, S., Kim, K., Roh, J. & Kwak, J. Recent progress in high-luminance quantum dot light-emitting diodes. Curr. Opt. Photon. 4, 161–173 (2020).

CAS  Google Scholar 

Liu, Z. et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 9, 83 (2020).

Article  CAS  Google Scholar 

Nannen, E., Frohleiks, J. & Gellner, S. Light-emitting electrochemical cells based on color-tunable inorganic colloidal quantum dots. Adv. Funct. Mater. 30, 1907349 (2020).

Article  CAS  Google Scholar 

Park, Y.-S., Roh, J., Diroll, B. T., Schaller, R. D. & Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 6, 382–401 (2021).

Article  CAS  Google Scholar 

Jung, H., Ahn, N. & Klimov, V. I. Prospects and challenges of colloidal quantum dot laser diodes. Nat. Photon. 15, 643–655 (2021).

Article  CAS  Google Scholar 

Pejović, V. et al. Infrared colloidal quantum dot image sensors. IEEE Trans. Electron. Devices 69, 2840–2850 (2022).

Article  Google Scholar 

Nakotte, T. et al. Colloidal quantum dot based infrared detectors: extending to the mid-infrared and moving from the lab to the field. J. Mater. Chem. C 10, 790–804 (2022).

Article  CAS  Google Scholar 

Kagan, C. R., Bassett, L. C., Murray, C. B. & Thompson, S. M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 121, 3186–3233 (2021).

Article  CAS  Google Scholar 

Chen, J. & Rong, K. Nanophotonic devices and circuits based on colloidal quantum dots. Mater. Chem. Front. 5, 4502–4537 (2021).

Article  CAS  Google Scholar 

Chen, M., Lu, L., Yu, H., Li, C. & Zhao, N. Integration of colloidal quantum dots with photonic structures for optoelectronic and optical devices. Adv. Sci. 8, 2101560 (2021).

Article  CAS  Google Scholar 

Click, S. M. & Rosenthal, S. J. Synthesis, surface chemistry, and fluorescent properties of InP quantum dots. Chem. Mater. 35, 822–836 (2023).

Article  CAS  Google Scholar 

Kim, Y. et al. III–V colloidal nanocrystals: control of covalent surfaces. Chem. Sci. 11, 913–922 (2020).

Article  CAS  Google Scholar 

Jang, E., Kim, Y., Won, Y.-H., Jang, H. & Choi, S.-M. Environmentally friendly InP-based quantum dots for efficient wide color gamut displays. ACS Energy Lett. 5, 1316–1327 (2020).

Article  CAS  Google Scholar 

Wu, Z., Liu, P., Zhang, W., Wang, K. & Sun, X. W. Development of InP quantum dot-based light-emitting diodes. ACS Energy Lett. 5, 1095–1106 (2020).

Article  CAS  Google Scholar 

Adachi, S. Handbook on Physical Properties of Semiconductors Vol. 2 (Springer, 2004).

Abdollahi, A., Golzan, M. M. & Aghayar, K. First-principles investigation of electronic properties of AlxIn1−xP semiconductor alloy. J. Mater. Sci. 51, 7343–7354 (2016).

Article  CAS  Google Scholar 

Braunstein, R. & Kane, E. O. The valence band structure of the III–V compounds. J. Phys. Chem. Solids 23, 1423–1431 (1962).

Article  CAS  Google Scholar 

Vurgaftman, I., Meyer, J. R. & Ram-Mohan, L. R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001).

Article  CAS  Google Scholar 

Kim, Y.-S., Marsman, M., Kresse, G., Tran, F. & Blaha, P. Towards efficient band structure and effective mass calculations for III–V direct band-gap semiconductors. Phys. Rev. B 82, 205212 (2010).

Article  Google Scholar 

Almeida, G. et al. Size-dependent optical properties of InP CQDs. Nano Lett. https://doi.org/10.1021/acs.nanolett.3c02630 (2023).

Franceschetti, A., Fu, H., Wang, L. W. & Zunger, A. Many-body pseudopotential theory of excitons in InP and CdSe quantum dots. Phys. Rev. B 60, 1819–1829 (1999).

Article  CAS  Google Scholar 

Efros, A. L. & Rosen, M. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 30, 475–521 (2000).

Article  CAS  Google Scholar 

Dümbgen, K. C., Zito, J., Infante, I. & Hens, Z. Shape, electronic structure, and trap states in indium phosphide quantum dots. Chem. Mater. 33, 6885–6896 (2021).

Article  Google Scholar 

Krauss, T. D. & Wise, F. W. Coherent acoustic phonons in a semiconductor quantum dot. Phys. Rev. Lett. 79, 5102–5105 (1997).

Article  CAS  Google Scholar 

Besombes, L., Kheng, K., Marsal, L. & Mariette, H. Acoustic phonon broadening mechanism in single quantum dot emission. Phys. Rev. B 63, 155307 (2001).

Article  Google Scholar 

Masumoto, Y. & Takagahara, T. (eds) Semiconductor Quantum Dots: Physics, Spectroscopy and Applications (Springer, 2002).

Bozyigit, D. et al. Soft surfaces of nanomaterials enable strong phonon interactions. Nature 531, 618–622 (2016).

Article  CAS  Google Scholar 

Cui, J. et al. Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton–phonon coupling and the optimization of spectral linewidths. Nano Lett. 16, 289–296 (2016).

Article  CAS  Google Scholar 

Kirschner, M. S. et al. Transient melting and recrystallization of semiconductor nanocrystals under multiple electron–hole pair excitation. Nano Lett. 17, 5314–5320 (2017).

Article  CAS  Google Scholar 

Yazdani, N. et al. Tuning electron–phonon interactions in nanocrystals through surface termination. Nano Lett. 18, 2233–2242 (2018).

Article  CAS  Google Scholar 

Yazdani, N., Volk, S., Yarema, O., Yarema, M. & Wood, V. Size, ligand, and defect-dependent electron–phonon coupling in chalcogenide and perovskite nanocrystals and its impact on luminescence line widths. ACS Photon. 7, 1088–1095 (2020).

Article  CAS  Google Scholar 

Kang, S., Kim, Y., Jang, E., Kang, Y. & Han, S. Fundamental limit of emission linewidth of quantum dots: ab initio study on CdSe nanocrystals. ACS Appl. Mater. Interfaces 12, 22012–22018 (2020).

Article  CAS  Google Scholar 

Guzelturk, B. et al. Dynamic lattice distortions driven by surface trapping in semiconductor nanocrystals. Nat. Commun. 12, 1860 (2021).

Article  CAS  Google Scholar 

Monreal, R. C. Electron–phonon interaction in the dynamics of trap filling in quantum dots. Phys. Rev. B 104, 184304 (2021).

Article  CAS  Google Scholar 

Kim, J., Wong, C. Y. & Scholes, G. D. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots. Acc. Chem. Res. 42, 1037–1046 (2009).

留言 (0)

沒有登入
gif