Transfer RNAs as dynamic and critical regulators of cancer progression

Hoagland, M. B., Zamecnik, P. C. & Stephenson, M. L. Intermediate reactions in protein biosynthesis. Biochim. Biophys. Acta 24, 215–216 (1957).

Article  CAS  PubMed  Google Scholar 

Ogata, K. & Nohara, H. The possible role of the ribonucleic acid (RNA) of the pH 5 enzyme in amino acid activation. Biochim. Biophys. Acta 25, 659–660 (1957).

Article  CAS  PubMed  Google Scholar 

Holley, R. W. An alanine-dependent, ribonuclease-inhibited conversion of AMP to ATP, and its possible relationship to protein synthesis. J. Am. Chem. Soc. 79, 658–662 (1957). This study, together with Hoagland et al. (1957) and Ogata et al. (1957), is one of the original studies that discovered tRNAs.

Article  CAS  Google Scholar 

Söll, D. & RajBhandary, U. L. tRNA: Structure, Biosynthesis, and Function (Wiley, 1995).

Suzuki, T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 22, 375–392 (2021).

Article  CAS  PubMed  Google Scholar 

Suzuki, T., Nagao, A. & Suzuki, T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu. Rev. Genet. 45, 299–329 (2011). This is a comprehensive review on human mt-tRNAs.

Article  CAS  PubMed  Google Scholar 

Orellana, E. A., Siegal, E. & Gregory, R. I. tRNA dysregulation and disease. Nat. Rev. Genet. 23, 651–664 (2022).

Article  CAS  PubMed  Google Scholar 

Holley, R. W. et al. Structure of a ribonucleic acid. Science 147, 1462–1465 (1965). This paper describes the first sequence of a tRNA.

Article  CAS  PubMed  Google Scholar 

Kim, S. H. et al. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185, 435–440 (1974).

Article  CAS  PubMed  Google Scholar 

Cramer, F., Erdmann, V. A., von der Haar, F. & Schlimme, E. Structure and reactivity of tRNA. J. Cell Physiol. 74, 163–178 (1969).

Article  CAS  Google Scholar 

Ramsay, E. P. & Vannini, A. Structural rearrangements of the RNA polymerase III machinery during tRNA transcription initiation. Biochim. Biophys. Acta Gene Regul. Mech. 1861, 285–294 (2018).

Article  CAS  PubMed  Google Scholar 

Phizicky, E. M. & Hopper, A. K. tRNA biology charges to the front. Genes Dev. 24, 1832–1860 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Rak, R. et al. Dynamic changes in tRNA modifications and abundance during T cell activation. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2106556118 (2021).

Torrent, M., Chalancon, G., de Groot, N. S., Wuster, A. & Madan Babu, M. Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Sci. Signal. 11, eaat6409 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, e221 (2006).

Article  PubMed  PubMed Central  Google Scholar 

Pinkard, O., McFarland, S., Sweet, T. & Coller, J. Quantitative tRNA-sequencing uncovers metazoan tissue-specific tRNA regulation. Nat. Commun. 11, 4104 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kimura, S., Dedon, P. C. & Waldor, M. K. Comparative tRNA sequencing and RNA mass spectrometry for surveying tRNA modifications. Nat. Chem. Biol. 16, 964–972 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gingold, H. et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell 158, 1281–1292 (2014). This paper classifiesproliferation-specificanddifferentiation-specifictRNAs.

Article  CAS  PubMed  Google Scholar 

Oler, A. J. et al. Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nat. Struct. Mol. Biol. 17, 620–628 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barski, A. et al. Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes. Nat. Struct. Mol. Biol. 17, 629–634 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goodarzi, H. et al. Modulated expression of specific tRNAs drives gene expression and cancer progression. Cell 165, 1416–1427 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 50, D231–D235 (2022).

Article  CAS  PubMed  Google Scholar 

Zhang, W., Foo, M., Eren, A. M. & Pan, T. tRNA modification dynamics from individual organisms to metaepitranscriptomics of microbiomes. Mol. Cell 82, 891–906 (2022). This article includes a systematic analysis of current tRNA profiling methods.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chujo, T. & Tomizawa, K. Human transfer RNA modopathies: diseases caused by aberrations in transfer RNA modifications. FEBS J. 288, 7096–7122 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barbieri, I. & Kouzarides, T. Role of RNA modifications in cancer. Nat. Rev. Cancer 20, 303–322 (2020).

Article  CAS  PubMed  Google Scholar 

Clark, W. C., Evans, M. E., Dominissini, D., Zheng, G. & Pan, T. tRNA base methylation identification and quantification via high-throughput sequencing. RNA 22, 1771–1784 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crick, F. H. Codon–anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19, 548–555 (1966).

Article  CAS  PubMed  Google Scholar 

Chan, P. P. & Lowe, T. M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184–D189 (2016).

Article  CAS  PubMed  Google Scholar 

Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 49, 9077–9096 (2021). This resource paper, together with Chan et al. (2016), describes the GtRNAdb database of predicted tRNA sequences.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pavon-Eternod, M. et al. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res. 37, 7268–7280 (2009). This paper is one of the first to attempt global profiling of tRNA levels in cancer using microarrays.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pavon-Eternod, M., Gomes, S., Rosner, M. R. & Pan, T. Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells. RNA 19, 461–466 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Earnest-Noble, L. B. et al. Two isoleucyl tRNAs that decode synonymous codons divergently regulate breast cancer metastatic growth by controlling translation of proliferation-regulating genes. Nat. Cancer 3, 1484–1497 (2022).

Article  CAS  PubMed  Google Scholar 

Taylor, M. W., Granger, G. A., Buck, C. A. & Holland, J. J. Similarities and differences among specific tRNA’s in mammalian tissues. Proc. Natl Acad. Sci. USA 57, 1712–1719 (1967).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gallo, R. C. Transfer RNA’s in human leukemia. J. Cell Physiol. 74, 149–153 (1969).

Article  CAS  Google Scholar 

Baliga, B. S., Borek, E., Weinstein, I. B. & Srinivasan, P. R. Differences in the transfer RNA’s of normal liver and Novikoff hepatoma. Proc. Natl Acad. Sci. USA 62, 899–905 (1969).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birch, J. et al. The initiator methionine tRNA drives cell migration and invasion leading to increased metastatic potential in melanoma. Biol. Open 5, 1371–1379 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruggero, D. Translational control in cancer etiology. Cold Spring Harb. Perspect. Biol. 5, a012336 (2013).

留言 (0)

沒有登入
gif