Stem-like exhausted and memory CD8+ T cells in cancer

Bruni, D., Angell, H. K. & Galon, J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020).

Article  CAS  PubMed  Google Scholar 

Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

Article  CAS  PubMed  Google Scholar 

Chung, H. K., McDonald, B. & Kaech, S. M. The architectural design of CD8+ T cell responses in acute and chronic infection: parallel structures with divergent fates. J. Exp. Med. 218, e20201730 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jameson, S. C. & Masopust, D. Understanding subset diversity in T cell memory. Immunity 48, 214–226 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zehn, D., Thimme, R., Lugli, E., de Almeida, G. P. & Oxenius, A. ‘Stem-like’ precursors are the fount to sustain persistent CD8+ T cell responses. Nat. Immunol. 23, 836–847 (2022).

Article  CAS  PubMed  Google Scholar 

McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

Article  CAS  PubMed  Google Scholar 

van der Leun, A. M. & Schumacher, T. N. An atlas of intratumoral T cells. Science 374, 1446–1447 (2021).

Article  PubMed  Google Scholar 

Brummelman, J. et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors. J. Exp. Med. 215, 2520–2535 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019).

Article  CAS  PubMed  Google Scholar 

Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kallies, A., Zehn, D. & Utzschneider, D. T. Precursor exhausted T cells: key to successful immunotherapy? Nat. Rev. Immunol. 20, 128–136 (2020).

Article  CAS  PubMed  Google Scholar 

Huang, Q. et al. The primordial differentiation of tumor-specific memory CD8+ T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell 185, 4049–4066.e25 (2022). This study describes molecularly distinct lymph node-residing memory-like CD8+T cells in preclinical cancer models and patients with hepatocellular carcinoma that serve as upstream precursors of TPEXcells and whose activation in lymph nodes is required for efficient responses to checkpoint blockade therapy in mice.

Article  CAS  PubMed  Google Scholar 

Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e20 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Connolly, K. A. et al. A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. Sci. Immunol. 6, eabg7836 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schenkel, J. M. et al. Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1+CD8+ T cells in tumor-draining lymph nodes. Immunity 54, 2338–2353.e6 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat. Rev. Cancer 20, 218–232 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Mair, F. et al. Extricating human tumour immune alterations from tissue inflammation. Nature 605, 728–735 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

Article  CAS  PubMed  Google Scholar 

Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019).

Article  CAS  PubMed  Google Scholar 

Oliveira, G. et al. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature 596, 119–125 (2021). This study provides the first comprehensive analysis of tumour-reactive CD8+T cell differentiation states in human melanoma samples, confirming a strong bias of tumour-reactive CD8+T cells towards differentiation states along the exhaustion spectrum.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosato, P. C. et al. Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy. Nat. Commun. 10, 567 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596, 126–132 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng, Y. et al. Non-terminally exhausted tumor-resident memory HBV-specific T cell responses correlate with relapse-free survival in hepatocellular carcinoma. Immunity 54, 1825–1840.e7 (2021).

Article  CAS  PubMed  Google Scholar 

Eberhardt, C. S. et al. Functional HPV-specific PD-1+ stem-like CD8 T cells in head and neck cancer. Nature 597, 279–284 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lowery, F. J. et al. Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. Science 375, 877–884 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng, C. et al. Transcriptomic profiles of neoantigen-reactive T cells in human gastrointestinal cancers. Cancer Cell 40, 410–423.e7 (2022).

Article  PubMed  Google Scholar 

Gros, A. et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1+CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789.e18 (2019).

Article  CAS  PubMed  Google Scholar 

Liu, B., Zhang, Y., Wang, D., Hu, X. & Zhang, Z. Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immune-checkpoint blockade. Nat. Cancer 3, 1123–1136 (2022).

Article  CAS  PubMed  Google Scholar 

Ren, X. et al. Insights gained from single-cell analysis of immune cells in the tumor microenvironment. Annu. Rev. Immunol. 39, 583–609 (2021).

Article  CAS  PubMed  Google Scholar 

Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).

Article  CAS  PubMed  Google Scholar 

Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211–218 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif