A guide to comprehensive phosphor discovery for solid-state lighting

United Nations Environment Programme. The Rapid Transition to Energy Efficient Lighting: An Integrated Policy Approach. UNEP https://wedocs.unep.org/20.500.11822/8468 (2013).

Pust, P., Schmidt, P. J. & Schnick, W. A revolution in lighting. Nat. Mater. 14, 454–458 (2015).

Article  CAS  Google Scholar 

George, N. C., Denault, K. A. & Seshadri, R. Phosphors for solid-state white lighting. Annu. Rev. Mater. Res. 43, 481–501 (2013).

Article  CAS  Google Scholar 

Morgan, P. et al. 2022 Solid-State Lighting R&D Opportunities. US Department of Energy Office of Scientific and Technical Information https://doi.org/10.2172/1862626 (2022).

McKittrick, J. & Shea-Rohwer, L. E. Review: down conversion materials for solid-state lighting. J. Am. Ceram. Soc. 97, 1327–1352 (2014).

Article  CAS  Google Scholar 

Meyer, J. & Tappe, F. Photoluminescent materials for solid-state lighting: state of the art and future challenges. Adv. Opt. Mater. 3, 424–430 (2015).

Article  CAS  Google Scholar 

Luo, X. & Xie, R.-J. Recent progress on discovery of novel phosphors for solid state lighting. J. Rare Earths 38, 464–473 (2020).

Article  Google Scholar 

Zhuo, Y. & Brgoch, J. Opportunities for next-generation luminescent materials through artificial intelligence. J. Phys. Chem. Lett. 12, 764–772 (2021).

Article  CAS  Google Scholar 

Hariyani, S. & Brgoch, J. Spectral design of phosphor-converted LED lighting guided by color theory. lnorg. Chem. 61, 4205–4218 (2022).

Article  CAS  Google Scholar 

Hariyani, S. & Brgoch, J. Advancing human-centric LED lighting using Na2MgPO4F:Eu2+. ACS Appl. Mater. Interfaces 13, 16669–16676 (2021).

Article  CAS  Google Scholar 

Lumileds. Narrow Red Phosphor Technology. Lumileds https://lumileds.com/wp-content/uploads/files/WP32.pdf (2016).

Ohno, Y. Color rendering and luminous efficacy of white LED spectra. Proc. SPIE Int. Soc. Opt. Eng. 5530, 88–98 (2004).

Google Scholar 

National Research Council, Division on Engineering and Physical Sciences, Board on Energy and Environmental Systems & Committee on Assessment of Solid-state Lighting. Assessment of Advanced Solid-State Lighting (The National Academies Press, 2013).

Murphy, J. E., Garcia-Santamaria, F., Setlur, A. A. & Sista, S. 62.4: PFS, K2SiF6:Mn4+: the red-line emitting LED phosphor behind GE’s TriGain Technology™ platform. SID Int. Symp. Dig. Tec. 46, 927–930 (2015).

Article  CAS  Google Scholar 

MacAdam, D. L. Specification of small chromaticity differences. J. Opt. Soc. Am. 33, 18–26 (1943).

Article  Google Scholar 

Dorenbos, P. Crystal field splitting of lanthanide 4fn−15d-levels in inorganic compounds. J. Alloy. Compd. 341, 156–159 (2002).

Article  CAS  Google Scholar 

Xia, Y. et al. Crystal structure evolution and luminescence properties of color tunable solid solution phosphors Ca2+xLa8−x(SiO4)6−x(PO4)xO2:Eu2+. Dalton Trans. 45, 1007–1015 (2016).

Article  CAS  Google Scholar 

Jiang, L. et al. Multiobjective machine learning-assisted discovery of a novel cyan–green garnet: Ce phosphors with excellent thermal stability. ACS Appl. Mater. Interfaces 14, 15426–15436 (2022).

Article  CAS  Google Scholar 

Lai, S., Zhao, M., Qiao, J., Molokeev, M. S. & Xia, Z. Data-driven photoluminescence tuning in Eu2+-doped phosphors. J. Phys. Chem. Lett. 11, 5680–5685 (2020).

Article  CAS  Google Scholar 

van Uitert, L. G. An empirical relation fitting the position in energy of the lower d-band edge for Eu2+ or Ce3+ in various compounds. J. Lumin. 29, 1–9 (1984).

Article  Google Scholar 

Park, W. B., Singh, S. P., Kim, M. & Sohn, K.-S. Phosphor informatics based on confirmatory factor analysis. ACS Comb. Sci. 17, 317–325 (2015).

Article  CAS  Google Scholar 

Wang, Q. et al. Crystal structure and photoluminescence properties of Eu2+-activated Ba2LiB5O10 phosphors. Opt. Commun. 284, 5315–5318 (2011).

Article  CAS  Google Scholar 

Sonekar, R., Omanwar, S. & Moharil, S. Combustion synthesis and photoluminescence of Eu2+ doped BaB8O13. Indian J. Pure Appl. Phys. 47, 441–443 (2009).

CAS  Google Scholar 

Lee, J.-W. et al. Metaheuristics-assisted combinatorial screening of Eu2+-doped Ca–Sr–Ba–Li–Mg–Al–Si–Ge–N compositional space in search of a narrow-band green emitting phosphor and density functional theory calculations. lnorg. Chem. 56, 9814–9824 (2017).

Article  CAS  Google Scholar 

Park, W. B., Singh, S. P. & Sohn, K.-S. Discovery of a phosphor for light emitting diode applications and its structural determination, Ba(Si,Al)5(O,N)8:Eu2+. J. Am. Chem. Soc. 136, 2363–2373 (2014).

Article  CAS  Google Scholar 

Strobel, P. et al. Narrow-band green emitting nitridolithoalumosilicate Ba[Li2(Al2Si2)N6]:Eu2+ with framework topology whj for LED/LCD-backlighting applications. Chem. Mater. 27, 6109–6115 (2015).

Article  CAS  Google Scholar 

Park, W. B., Singh, S. P., Yoon, C. & Sohn, K.-S. Combinatorial chemistry of oxynitride phosphors and discovery of a novel phosphor for use in light emitting diodes, Ca1.5Ba0.5Si5N6O3:Eu2+. J. Mater. Chem. C 1, 1832–1839 (2013).

Article  CAS  Google Scholar 

Park, W. B., Shin, N., Hong, K.-P., Pyo, M. & Sohn, K.-S. A new paradigm for materials discovery: heuristics-assisted combinatorial chemistry involving parameterization of material novelty. Adv. Funct. Mater. 22, 2258–2266 (2012).

Article  CAS  Google Scholar 

Kulshreshtha, C., Sharma, A. K. & Sohn, K.-S. Search for new red phosphors using genetic algorithm-assisted combinatorial chemistry. J. Comb. Chem. 10, 421–425 (2008).

Article  CAS  Google Scholar 

Singh, S. P., Kim, M., Park, W. B., Lee, J.-W. & Sohn, K.-S. Discovery of a red-emitting Li3RbGe8O18:Mn4+ phosphor in the alkali-germanate system: structural determination and electronic calculations. lnorg. Chem. 55, 10310–10319 (2016).

Article  CAS  Google Scholar 

Takeda, T., Hirosaki, N., Funahashi, S. & Xie, R.-J. New phosphor discovery by the single particle diagnosis approach. Mater. Discov. 1, 29–37 (2015).

Article  Google Scholar 

Zhang, Y. et al. Realizing red/orange emission of Eu2+/Ce3+ in La26−xSrxSi41Ox+1N80−x (x = 12.72–12.90) phosphors for high color rendition white LEDs. J. Mater. Chem. C 8, 13458–13466 (2020).

Article  CAS  Google Scholar 

Hirosaki, N., Takeda, T., Funahashi, S. & Xie, R.-J. Discovery of new nitridosilicate phosphors for solid state lighting by the single-particle-diagnosis approach. Chem. Mater. 26, 4280–4288 (2014).

Article  CAS  Google Scholar 

Takeda, T., Hirosaki, N., Funahshi, S. & Xie, R.-J. Narrow-band green-emitting phosphor Ba2LiSi7AlN12:Eu2+ with high thermal stability discovered by a single particle diagnosis approach. Chem. Mater. 27, 5892–5898 (2015).

Article  CAS  Google Scholar 

Wang, C.-Y. et al. New deep-blue-emitting Ce-doped A4–mBnC19+2mX29+m (A = Sr, La; B = Li; C = Si, Al; X = O, N; 0 ≤ m ≤ 1; 0 ≤ n ≤ 1) phosphors for high-color-rendering warm white light-emitting diodes. ACS Appl. Mater. Interfaces 11, 29047–29055 (2019).

Article  CAS  Google Scholar 

Wong, K.-L., Bünzli, J.-C. G. & Tanner, P. A. Quantum yield and brightness. J. Lumin. 224, 117256 (2020).

Article  CAS  Google Scholar 

Feldmann, C., Jüstel, T., Ronda, C. R. & Wiechert, D. U. Quantum efficiency of down-conversion phosphor LiGdF4:Eu. J. Lumin. 92, 245–254 (2001).

Article  CAS  Google Scholar 

Fan, B., Chlique, C., Merdrignac-Conanec, O., Zhang, X. & Fan, X. Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%. J. Phys. Chem. C 116, 11652–11657 (2012).

Article  CAS  Google Scholar 

Zhong, Y. et al. Pyrophosphate phosphor solid solution with high quantum efficiency and thermal stability for efficient LED lighting. iScience 23, 100892 (2020).

Article  CAS  Google Scholar 

Dexter, D. L. & Schulman, J. H. Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22, 1063–1070 (2004).

Article  Google Scholar 

Rohwer, L. S. & Martin, J. E. Measuring the absolute quantum efficiency of luminescent materials. J. Lumin. 115, 77–90 (2005).

Article  CAS  Google Scholar 

Zhuo, Y., Mansouri Tehrani, A., Oliynyk, A. O., Duke, A. C. & Brgoch, J. Identifying an efficient, thermally robust inorganic phosphor host via machine learning. Nat. Commun. 9, 4377 (2018).

Article  Google Scholar 

George, N. C. et al. Local environments of dilute activator ions in the solid-state lighting phosphor Y3–xCexAl5O12. Chem. Mater. 25, 3979–3995 (2013).

Article  CAS  Google Scholar 

Guo, C., Xu, Y., Ren, Z. & Bai, J. Blue-white-yellow tunable emission from Ce3+ and Eu2+ co-doped BaSiO3 phosphors. J. Electrochem. Soc. 158, J373 (2011).

Article  CAS  Google Scholar 

Brgoch, J., DenBaars, S. P. & Seshadri, R. Proxies from ab initio calculations for screening efficient Ce3+ phosphor hosts. J. Phys. Chem. C 117, 17955–17959 (2013).

Article  CAS  Google Scholar 

Hariyani, S., Duke, A. C., Krauskopf, T., Zeier, W. G. & Brgoch, J. The effect of rare-earth substitution on the Debye temperature of inorganic phosphors. Appl. Phys. Lett. 116, 051901 (2020).

Article  CAS  Google Scholar 

Hermus, M. & Brgoch, J. Phosphors by design: approaches toward the development of advanced luminescent materials. Electrochem. Soc. Interface 24, 55–59 (2015).

Article  CAS  Google Scholar 

Amachraa, M. et al. Predicting thermal quenching in inorganic phosph

留言 (0)

沒有登入
gif