Identification of novel inhibitors from Urtica spp against TNBC targeting JAK2 receptor for breast cancer therapy

Rajabi S, Maresca M, Yumashev AV, Choopani R, Hajimehdipoor H. The Most competent plant-derived natural products for targeting apoptosis in cancer therapy. Biomolecules. 2021. https://doi.org/10.3390/BIOM11040534.

Article  PubMed  PubMed Central  Google Scholar 

https://www.who.int/news-room/fact-sheets/detail/cancer.

Sun S, Zhao Y, Xu K. Post-adjuvant chemotherapy for triple-negative breast cancer. Med Hypotheses. 2016;90:74–5. https://doi.org/10.1016/J.MEHY.2016.03.009.

Article  PubMed  Google Scholar 

Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48. https://doi.org/10.1056/NEJMRA1001389.

Article  CAS  PubMed  Google Scholar 

Bakar AA, Akhtar MN, Ali NM, Yeap SK, Quah CK, Loh WS, Alitheen NB, Zareen S, Ul-Haq Z, Shah SAA. Design, synthesis and docking studies of Flavokawain B type Chalcones and their cytotoxic effects on MCF-7 and MDA-MB-231 cell lines. Molecules. 2018. https://doi.org/10.3390/MOLECULES23030616.

Article  PubMed  PubMed Central  Google Scholar 

Kiu H, Nicholson SE. Biology and significance of the JAK/STAT signalling pathways. Growth Factors. 2012;30:88–106. https://doi.org/10.3109/08977194.2012.660936.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu H, Huang M, Cao P, Wang T, Shu Y, Liu P. MiR-135a targets JAK2 and inhibits gastric cancer cell proliferation. Cancer Biol Ther. 2012;13:281–8. https://doi.org/10.4161/CBT.18943.

Article  CAS  PubMed  Google Scholar 

Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, Cox CE, Falcone R, Fairclough R, Parsons S, Laudano A, Gazit A, Levitzki A, Kraker A, Jove R. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene. 2001;20:2499–513. https://doi.org/10.1038/SJ.ONC.1204349.

Article  CAS  PubMed  Google Scholar 

Marotta LLC, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, Bloushtain-Qimron N, Kim JJ, Choudhury SA, Maruyama R, Wu Z, Gönen M, Mulvey LA, Bessarabova MO, Huh SJ, Silver SJ, Kim SY, Park SY, Lee HE, Anderson KS, Richardson AL, Nikolskaya T, Nikolsky Y, Liu XS, Root DE, Hahn WC, Frank DA, Polyak K. The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24− stem cell-like breast cancer cells in human tumors. J Clin Invest. 2011;121:2723–35. https://doi.org/10.1172/JCI44745.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim MS, Lee WS, Jeong J, Kim SJ, Jin W. Induction of metastatic potential by TrkB via activation of IL6/JAK2/STAT3 and PI3K/AKT signaling in breast cancer. Oncotarget. 2015;6:40158–71. https://doi.org/10.18632/ONCOTARGET.5522.

Article  PubMed  PubMed Central  Google Scholar 

Nakamura H, Maeda H. Cancer chemotherapy, fundamentals of pharmaceutical. Nanoscience. 2023. https://doi.org/10.1007/978-1-4614-9164-4_15.

Article  Google Scholar 

Dehelean CA, Marcovici I, Soica C, Mioc M, Coricovac D, Iurciuc S, Cretu OM, Pinzaru I. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules. 2021. https://doi.org/10.3390/MOLECULES26041109.

Article  PubMed  PubMed Central  Google Scholar 

Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Shah SA, Khalil AT. Plant-derived anticancer agents: A green anticancer approach, Asian Pac. J Trop Biomed. 2017;7:1129–50. https://doi.org/10.1016/J.APJTB.2017.10.016.

Article  Google Scholar 

Orhan IE, Senol Deniz FS. Natural products as potential leads against coronaviruses: could they be encouraging structural models against SARS-CoV-2? Nat Prod Bioprospect. 2020;10:171–86. https://doi.org/10.1007/S13659-020-00250-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kregiel D, Pawlikowska E, Antolak H. Urtica spp.: Ordinary plants with extraordinary properties, molecules : a journal of synthetic chemistry and natural product. Chemistry. 2018. https://doi.org/10.3390/MOLECULES23071664.

Article  Google Scholar 

Upreti S, Prusty JS, Pandey SC, Kumar A, Samant M. Identification of novel inhibitors of angiotensin-converting enzyme 2 (ACE-2) receptor from Urtica dioica to combat coronavirus disease 2019 (COVID-19). Mol Divers. 2021;25:1795. https://doi.org/10.1007/S11030-020-10159-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Upreti S, Prusty JS, Kumar A, Samant M. Identification of SARS-CoV-2 spike protein inhibitors from urtica dioica to develop herbal-based therapeutics against COVID-19, World. J Tradit Chin Med. 2023;9:61–70. https://doi.org/10.4103/2311-8571.358784.

Article  CAS  Google Scholar 

Tao Y, Zou W, Nanayakkara S, Kraka E. PyVibMS: a PyMOL plugin for visualizing vibrations in molecules and solids. J Mol Model. 2020. https://doi.org/10.1007/S00894-020-04508-Z.

Article  PubMed  Google Scholar 

Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243–50. https://doi.org/10.1007/978-1-4939-2269-7_19.

Article  CAS  PubMed  Google Scholar 

Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1:337–41. https://doi.org/10.1016/J.DDTEC.2004.11.007.

Article  CAS  PubMed  Google Scholar 

Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:1–13. https://doi.org/10.1038/srep42717.

Article  Google Scholar 

Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46:W257–63. https://doi.org/10.1093/NAR/GKY318.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58:4066–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandra Pandey S, Dhami DS, Jha A, Chandra Shah G, Kumar A, Samant M. Identification of trans-2-cis-8-Matricaria-ester from the essential oil of erigeron multiradiatus and evaluation of its antileishmanial potential by in vitro and in silico approaches. ACS Omega. 2019;4:14640–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu K, Law JH, Fotovati A, Dunn SE. Small interfering RNA library screen identified polo-like kinase-1 (PLK1) as a potential therapeutic target for breast cancer that uniquely eliminates tumor-initiating cells. Breast Cancer Res. 2012;14:R22. https://doi.org/10.1186/BCR3107.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ayele TM, Muche ZT, Teklemariam AB, Kassie AB, Abebe EC. Role of JAK2/STAT3 signaling pathway in the tumorigenesis, chemotherapy resistance, and treatment of solid tumors: a systemic review. J Inflamm Res. 2022;15:1349. https://doi.org/10.2147/JIR.S353489.

Article  Google Scholar 

Argetsinger LS, Kouadio J-LK, Steen H, Stensballe A, Jensen ON, Carter-Su C. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity. Mol Cell Biol. 2004;24:4955–67. https://doi.org/10.1128/MCB.24.11.4955-4967.2004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murray PJ. The JAK-STAT signaling pathway: input and output integration. J Immunol. 2007;178:2623–9. https://doi.org/10.4049/JIMMUNOL.178.5.2623.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif