Reconstruction of ovarian follicular-like structure by recellularization of a cell-free human ovarian scaffold with mouse fetal ovarian cells

Alaee S, Asadollahpour R, Hosseinzadeh Colagar A, Talaei-Khozani T (2021) The decellularized ovary as a potential scaffold for maturation of preantral ovarian follicles of prepubertal mice. Syst Biol Reprod Med 67:413–427. https://doi.org/10.1080/19396368.2021.1968542

Article  CAS  PubMed  Google Scholar 

Alshaikh AB, Padma AM, Dehlin M, Akouri R, Song MJ, Brännström M, Hellström M (2019) Decellularization of the mouse ovary: comparison of different scaffold generation protocols for future ovarian bioengineering. J Ovarian Res 12:58. https://doi.org/10.1186/s13048-019-0531-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arapaki A, Christopoulos P, Kalampokas E, Triantafyllidou O, Matsas A, Vlahos NF (2022) Ovarian tissue cryopreservation in children and adolescents. Child (Basel) 9:1256. https://doi.org/10.3390/children9081256

Article  Google Scholar 

Buckenmeyer MJ, Sukhwani M, Iftikhar A, Nolfi AL, Xian Z, Dadi S, Case ZW, Steimer SR, D’Amore A, Orwig KE, Brown BN (2020) Bioengineering an in situ ovary (ISO) for fertility preservation. bioRxiv. https://doi.org/10.1101/2020.01.03.893941

Article  Google Scholar 

Canovas S, Campos R, Aguilar E, Cibelli JB (2017) Progress towards human primordial germ cell specification in vitro. Mol Hum Reprod 23:4–15. https://doi.org/10.1093/molehr/gaw069

Article  CAS  PubMed  Google Scholar 

Chen J, Torres-de la Roche LA, Kahlert UD, Isachenko V, Huang H, Hennefründ J, Yan X, Chen Q, Shi W, Li Y (2022) Artificial ovary for young female breast cancer patients. Front Med (Lausanne) 9:837022. https://doi.org/10.3389/fmed.2022.837022

Article  PubMed  Google Scholar 

Chiti MC, Vanacker J, Ouni E, Tatic N, Viswanath A, Des Rieux A, Dolmans MM, White LJ, Amorim CA (2022) Ovarian extracellular matrix-based hydrogel for human ovarian follicle survival in vivo: a pilot work. J Biomed Mater Res B Appl Biomater 110:1012–1022. https://doi.org/10.1002/jbm.b.34974

Article  CAS  PubMed  Google Scholar 

Cho E, Kim YY, Noh K, Ku SY (2019) A new possibility in fertility preservation: the artificial ovary. J Tissue Eng Regen Med 13:1294–1315. https://doi.org/10.1002/term.2870

Article  CAS  PubMed  Google Scholar 

Clarkson YL, McLaughlin M, Waterfall M, Dunlop CE, Skehel PA, Anderson RA, Telfer EE (2018) Initial characterisation of adult human ovarian cell populations isolated by DDX4 expression and aldehyde dehydrogenase activity. Sci Rep 8:6953. https://doi.org/10.1038/s41598-018-25116-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Castro FC, Cruz MHC, Leal CLV (2016) Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility-A review. Asian-Australas J Anim Sci 29:1065–1074. https://doi.org/10.5713/ajas.15.0797

Article  CAS  PubMed  Google Scholar 

Dolmans M-M, Luyckx V, Donnez J, Andersen CY, Greve T (2013) Risk of transferring malignant cells with transplanted frozen-thawed ovarian tissue. Fertil Steril 99:1514–1522. https://doi.org/10.1016/j.fertnstert.2013.03.027

Article  PubMed  Google Scholar 

Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531–535. https://doi.org/10.1038/383531a0

Article  CAS  PubMed  Google Scholar 

Eivazkhani F, Abtahi NS, Tavana S, Mirzaeian L, Abedi F, Ebrahimi B, Montazeri L, Valojerdi MR, Fathi R (2019) Evaluating two ovarian decellularization methods in three species. Mater Sci Eng C Mater Biol Appl 102:670–682. https://doi.org/10.1016/j.msec.2019.04.092

Article  CAS  PubMed  Google Scholar 

Elvin JA, Yan C, Wang P, Nishimori K, Matzuk MM (1999) Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol 13:1018–1034. https://doi.org/10.1210/mend.13.6.0309

Article  CAS  PubMed  Google Scholar 

Eppig JJ, Wigglesworth K (2000) Development of mouse and rat oocytes in chimeric reaggregated ovaries after interspecific exchange of somatic and germ cell components. Biol Reprod 63:1014–1023. https://doi.org/10.1095/biolreprod63.4.1014

Article  CAS  PubMed  Google Scholar 

Gittens JE, Barr KJ, Vanderhyden BC, Kidder GM (2005) Interplay between paracrine signaling and gap junctional communication in ovarian follicles. Cell Sci 118:113–122. https://doi.org/10.1242/jcs.01587

Article  CAS  Google Scholar 

Hassanpour A, Talaei-Khozani T, Kargar-Abarghouei E, Razban V, Vojdani Z (2018) Decellularized human ovarian scaffold based on a sodium lauryl ester sulfate (SLES)-treated protocol, as a natural three-dimensional scaffold for construction of bioengineered ovaries. Stem Cell Res Ther 9:252. https://doi.org/10.1186/s13287-018-0971-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoekman EJ, Louwe LA, Rooijers M, van der Westerlaken LAJ, Klijn NF, Pilgram GSK, de Kroon CD, Hilders CGJM (2020) Ovarian tissue cryopreservation: low usage rates and high live-birth rate after transplantation. Acta Obstet Gynecol Scand 99:213–221. https://doi.org/10.1111/aogs.13735

Article  PubMed  Google Scholar 

Huntriss J, Hinkins M, Picton HM (2006) cDNA cloning and expression of the human NOBOX gene in oocytes and ovarian follicles. Mol Hum Reprod 12:283–289. https://doi.org/10.1093/molehr/gal035

Article  CAS  PubMed  Google Scholar 

Jakus AE, Laronda MM, Rashedi AS, Robinson CM, Lee C, Jordan SW, Orwig KE, Woodruff TK, Shah RN (2017) Tissue Papers from organ-specific decellularized extracellular matrices. Adv Funct Mater 27:1700992. https://doi.org/10.1002/adfm.201700992

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kinnear HM, Tomaszewski CE, Chang FL, Moravek MB, Xu M, Padmanabhan V, Shikanov A (2020) The ovarian stroma as a new frontier. Reproduction 160:R25–R39. https://doi.org/10.1530/REP-19-0501

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laronda MM, Jakus AE, Whelan KA, Wertheim JA, Shah RN, Woodruff TK (2015) Initiation of puberty in mice following decellularized ovary transplant. Biomaterials 50:20–29. https://doi.org/10.1016/j.biomaterials.2015.01.051

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lei L, Zhang H, Jin S, Wang F, Fu M, Wang H, Xia G (2006) Stage-specific germ‐somatic cell interaction directs the primordial folliculogenesis in mouse fetal ovaries. J Cell Physiol 208:640–647. https://doi.org/10.1002/jcp.20702

Article  CAS  PubMed  Google Scholar 

Liu W-Y, Lin S-G, Zhuo R-Y, Xie Y-Y, Pan W, Lin X-F, Shen FX (2017) Xenogeneic decellularized scaffold: a novel platform for ovary regeneration. Tissue Eng Part C Methods 23:61–71. https://doi.org/10.1089/ten.TEC.2016.0410

Article  PubMed  PubMed Central  Google Scholar 

Medrano JV, Ramathal C, Nguyen HN, Simon C, Reijo Pera RA (2012) Divergent RNA-binding proteins, DAZL and VASA, induce meiotic progression in human germ cells derived in vitro. Stem Cells 30:441–451. https://doi.org/10.1002/stem.1012

Article  CAS  PubMed  Google Scholar 

Monti M, Redi C (2009) Oogenesis specific genes (Nobox, Oct4, Bmp15, Gdf9, Oogenesin1 and Oogenesin2) are differentially expressed during natural and gonadotropin-induced mouse follicular development. Mol Reprod Dev 76:994–1003. https://doi.org/10.1002/mrd.21059

Article  CAS  PubMed  Google Scholar 

Nagyová E, Němcová L, Camaioni A (2021) Cumulus extracellular matrix is an important part of oocyte microenvironment in ovarian follicles: its remodeling and proteolytic degradation. Int J Mol Sci 23:54. https://doi.org/10.3390/ijms23010054

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nikniaz H, Zandieh Z, Nouri M, Daei-Farshbaf N, Aflatoonian R, Gholipourmalekabadi M, Jameie SB (2021) Comparing various protocols of human and bovine ovarian tissue decellularization to prepare extracellular matrix-alginate scaffold for better follicle development in vitro. BMC Biotechnol 21:1–8. https://doi.org/10.1186/s12896-020-00658-3

Article  CAS  Google Scholar 

Park E-S, Tilly JL (2015) Use of DEAD-box polypeptide-4 (Ddx4) gene promoter-driven fluorescent reporter mice to identify mitotically active germ cells in post-natal mouse ovaries. Mol Hum Reprod 21:58–65. https://doi.org/10.1093/molehr/gau071

Article  CAS  PubMed  Google Scholar 

Rodrigues P, Limback D, McGinnis L, Marques M, Aibar J, Plancha CE (2021) Germ–somatic cell interactions are involved in establishing the follicle reserve in mammals. Front Cell Dev Biol 9:674137. https://doi.org/10.3389/fcell.2021.674137

Article  PubMed  PubMed Central  Google Scholar 

Pors S, Ramløse M, Nikiforov D, Lundsgaard K, Cheng J, Andersen CY, Kristensen SG (2019) Initial steps in reconstruction of the human ovary: survival of pre-antral stage follicles in a decellularized human ovarian scaffold. Hum Reprod 34:1523–1535. https://doi.org/10.1093/humrep/dez077

Article  CAS  PubMed  Google Scholar 

Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM (2004) NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 305:1157–1159. https://doi.org/10.1126/science.1099755

Article  CAS  PubMed  Google Scholar 

Simon AM, Goodenough DA, Li E, Paul DL (1997) Female infertility in mice lacking connexin 37. Nature 385:525–529. https://doi.org/10.1038/385525a0

留言 (0)

沒有登入
gif