HDAC11 mediates the ubiquitin-dependent degradation of p53 and inhibits the anti-leukemia effect of PD0166285

Aleem E, Arceci RJ. Targeting cell cycle regulators in hematologic malignancies. Front Cell Dev Biol. 2015;3:16.

Article  PubMed  PubMed Central  Google Scholar 

Lin Y, Kang T, Zhou BP. Doxorubicin enhances Snail/LSD1-mediated PTEN suppression in a PARP1-dependent manner. Cell Cycle. 2014;13(11):1708–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niida H, Katsuno Y, Banerjee B, Hande MP, Nakanishi M. Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol Cell Biol. 2007;27(7):2572–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garcia TB, Snedeker JC, Baturin D, et al. A small-molecule inhibitor of WEE1, AZD1775, synergizes with olaparib by impairing homologous recombination and enhancing DNA damage and apoptosis in acute leukemia. Mol Cancer Ther. 2017;16(10):2058–68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou L, Zhang Y, Chen S, et al. A regimen combining the Wee1 inhibitor AZD1775 with HDAC inhibitors targets human acute myeloid leukemia cells harboring various genetic mutations. Leukemia. 2015;29(4):807–18.

Article  CAS  PubMed  Google Scholar 

Pai JT, Hsu CY, Hua KT, et al. NBM-T-BBX-OS01, semisynthesized from osthole, induced G1 growth arrest through HDAC6 inhibition in lung cancer cells. Molecules. 2015;20(5):8000–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long J, Fang WY, Chang L, et al. Targeting HDAC3, a new partner protein of AKT in the reversal of chemoresistance in acute myeloid leukemia via DNA damage response. Leukemia. 2017;31(12):2761–70.

Article  CAS  PubMed  Google Scholar 

Long J, Jia MY, Fang WY, et al. FLT3 inhibition upregulates HDAC8 via FOXO to inactivate p53 and promote maintenance of FLT3-ITD+ acute myeloid leukemia. Blood. 2020;135(17):1472–83.

Article  PubMed  Google Scholar 

Johansson AC, Ansell A, Jerhammar F, et al. Cancer-associated fibroblasts induce matrix metalloproteinase-mediated cetuximab resistance in head and neck squamous cell carcinoma cells. Mol Cancer Res. 2012;10(9):1158–68.

Article  CAS  PubMed  Google Scholar 

Huang F, Sun J, Chen W, et al. HDAC4 inhibition disrupts TET2 function in high-risk MDS and AML. Aging (Albany NY). 2020;12(17):16759–74.

Article  CAS  PubMed  Google Scholar 

Sharma V, Wright KL, Epling-Burnette PK, Reuther GW. Metabolic vulnerabilities and epigenetic dysregulation in myeloproliferative neoplasms. Front Immunol. 2020;11:604142.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bi L, Ren Y, Feng M, et al. HDAC11 regulates glycolysis through the LKB1/AMPK signaling pathway to maintain hepatocellular carcinoma stemness. Cancer Res. 2021;81(8):2015–28.

Article  CAS  PubMed  Google Scholar 

Yue L, Sharma V, Horvat NP, et al. HDAC11 deficiency disrupts oncogene-induced hematopoiesis in myeloproliferative neoplasms. Blood. 2020;135(3):191–207.

Article  PubMed  PubMed Central  Google Scholar 

Bora-Singhal N, Mohankumar D, Saha B, et al. Novel HDAC11 inhibitors suppress lung adenocarcinoma stem cell self-renewal and overcome drug resistance by suppressing Sox2. Sci Rep. 2020;10(1):4722.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao C, Wang Y, Zheng M, et al. RBBP6 increases radioresistance and serves as a therapeutic target for preoperative radiotherapy in colorectal cancer. Cancer Sci. 2018;109(4):1075–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chao CC. Mechanisms of p53 degradation. Clin Chim Acta. 2015;438:139–47.

Article  CAS  PubMed  Google Scholar 

Saygin C, Carraway HE. Emerging therapies for acute myeloid leukemia. J Hematol Oncol. 2017;10(1):93.

Article  PubMed  PubMed Central  Google Scholar 

Winer ES, Stone RM. Novel therapy in acute myeloid leukemia (AML): moving toward targeted approaches. Ther Adv Hematol. 2019;10:2040620719860645.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lockhead S, Moskaleva A, Kamenz J, et al. The apparent requirement for protein synthesis during G2 phase is due to checkpoint activation. Cell Rep. 2020;32(2):107901.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsai TY, Theriot JA, Ferrell JE Jr. Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos. PLoS Biol. 2014;12(2):e1001788.

Article  PubMed  PubMed Central  Google Scholar 

Mir SE, De Witt Hamer PC, Krawczyk PM, et al. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell. 2010;18(3):244–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem. 2002;277(28):25748–55.

Article  CAS  PubMed  Google Scholar 

Thangapandian S, John S, Lee Y, Arulalapperumal V, Lee KW. Molecular modeling study on tunnel behavior in different histone deacetylase isoforms. PLoS ONE. 2012;7(11):e49327.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deubzer HE, Schier MC, Oehme I, et al. HDAC11 is a novel drug target in carcinomas. Int J Cancer. 2013;132(9):2200–8.

Article  CAS  PubMed  Google Scholar 

Bradbury CA, Khanim FL, Hayden R, et al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia. 2005;19(10):1751–9.

Article  CAS  PubMed  Google Scholar 

Yu Z, Wang R, Chen F, Wang J, Huang X. Five novel oncogenic signatures could be utilized as AFP-related diagnostic biomarkers for hepatocellular carcinoma based on next-generation sequencing. Dig Dis Sci. 2018;63(4):945–57.

Article  CAS  PubMed  Google Scholar 

Gong D, Zeng Z, Yi F, Wu J. Inhibition of histone deacetylase 11 promotes human liver cancer cell apoptosis. Am J Transl Res. 2019;11(2):983–90.

CAS  PubMed  PubMed Central  Google Scholar 

Wang W, Fu L, Li S, Xu Z, Li X. Histone deacetylase 11 suppresses p53 expression in pituitary tumor cells. Cell Biol Int. 2017;41(12):1290–5.

Article  CAS  PubMed  Google Scholar 

Li J, Wang Y, Sun Y, Lawrence TS. Wild-type TP53 inhibits G(2)-phase checkpoint abrogation and radiosensitization induced by PD0166285, a WEE1 kinase inhibitor. Radiat Res. 2002;157(3):322–30.

Article  CAS  PubMed  Google Scholar 

Wang Y, Li J, Booher RN, et al. Radiosensitization of p53 mutant cells by PD0166285, a novel G(2) checkpoint abrogator. Cancer Res. 2001;61(22):8211–7.

CAS  PubMed  Google Scholar 

Devine T, Dai MS. Targeting the ubiquitin-mediated proteasome degradation of p53 for cancer therapy. Curr Pharm Des. 2013;19(18):3248–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou R, Wu J, Tang X, et al. Histone deacetylase inhibitor AR-42 inhibits breast cancer cell growth and demonstrates a synergistic effect in combination with 5-FU. Oncol Lett. 2018;16(2):1967–74.

PubMed  PubMed Central  Google Scholar 

Ito A, Kawaguchi Y, Lai CH, et al. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 2002;21(22):6236–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li M, Luo J, Brooks CL, Gu W. Acetylation of p53 inhibits its ubiquitination by Mdm2. J Biol Chem. 2002;277(52):50607–11.

Article  CAS  PubMed  Google Scholar 

Liu Z, Wang Y, Gao T, et al. CPLM: a database of protein lysine modifications. Nucleic Acids Res. 2014;42:D531-36.

Article  CAS  PubMed  Google Scholar 

Wang G, Li S, Gilbert J, et al. Crucial roles for SIRT2 and AMPA receptor acetylation in synaptic plasticity and memory. Cell Rep. 2017;20(6):1335–47.

Article  CAS 

留言 (0)

沒有登入
gif