Novel biomolecules in targeted cancer therapy: a new approach towards precision medicine

Dragojevic S, Ryu JS, Raucher D. Polymer-based prodrugs: improving tumor targeting and the solubility of small molecule drugs in cancer therapy. Molecules. 2015;20(12):21750–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silverman GJ. Anti-CD20 therapy and autoimmune disease: therapeutic opportunities and evolving insights. Front Biosci. 2007;12:2194–206.

Article  CAS  PubMed  Google Scholar 

Browning JL. B cells move to centre stage: novel opportunities for autoimmune disease treatment. Nat Rev Drug Discov. 2006;5(7):564–76.

Article  CAS  PubMed  Google Scholar 

Feugier P, et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol. 2005;23(18):4117–26.

Article  CAS  PubMed  Google Scholar 

Gerber DE. Targeted therapies: a new generation of cancer treatments. Am Fam Physician. 2008;77(3):311–9.

PubMed  Google Scholar 

Romond EH, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84.

Article  CAS  PubMed  Google Scholar 

Moore MJ, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25(15):1960–6.

Article  CAS  PubMed  Google Scholar 

Willett CG, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10(2):145–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tanner JE. Designing antibodies for oncology. Cancer Metastasis Rev. 2005;24(4):585–98.

Article  CAS  PubMed  Google Scholar 

Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer. 2006;6(9):714–27.

Article  CAS  PubMed  Google Scholar 

Kantarjian H, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med. 2002;346(9):645–52.

Article  CAS  PubMed  Google Scholar 

Kantarjian HM, et al. Imatinib mesylate therapy in newly diagnosed patients with Philadelphia chromosome-positive chronic myelogenous leukemia: high incidence of early complete and major cytogenetic responses. Blood. 2003;101(1):97–100.

Article  CAS  PubMed  Google Scholar 

Coiffier B, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42.

Article  CAS  PubMed  Google Scholar 

Motzer RJ, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24.

Article  CAS  PubMed  Google Scholar 

Ducry L, Stump B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem. 2010;21(1):5–13.

Article  CAS  PubMed  Google Scholar 

Kamath AV. Translational pharmacokinetics and pharmacodynamics of monoclonal antibodies. Drug Discov Today Technol. 2016;21–22:75–83.

Article  PubMed  Google Scholar 

Panowski S, et al. Site-specific antibody drug conjugates for cancer therapy. MAbs. 2014;6(1):34–45.

Article  PubMed  Google Scholar 

Hoffmann RM, et al. Antibody structure and engineering considerations for the design and function of antibody drug conjugates (ADCs). Oncoimmunology. 2018;7(3): e1395127.

Article  PubMed  Google Scholar 

Lu J, et al. Linkers having a crucial role in antibody-drug conjugates. Int J Mol Sci. 2016;17(4):561.

Article  PubMed  PubMed Central  Google Scholar 

Peters C, Brown S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep. 2015;35(4):e00225.

Article  PubMed  PubMed Central  Google Scholar 

Pietersz GA, Krauer K. Antibody-targeted drugs for the therapy of cancer. J Drug Target. 1994;2(3):183–215.

Article  CAS  PubMed  Google Scholar 

Sedlacek, H.H., et al. Antibodies as Carriers of Cytotoxicity. 1992.

Brekke OH, Sandlie I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov. 2003;2(1):52–62.

Article  CAS  PubMed  Google Scholar 

Harding FA, et al. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs. 2010;2(3):256–65.

Article  PubMed  PubMed Central  Google Scholar 

Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.

Article  PubMed  Google Scholar 

Milstein C. The hybridoma revolution: an offshoot of basic research. BioEssays. 1999;21(11):966–73.

Article  CAS  PubMed  Google Scholar 

Skerra A, Plückthun A. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science. 1988;240(4855):1038–41.

Article  CAS  PubMed  Google Scholar 

McCafferty J, et al. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990;348(6301):552–4.

Article  CAS  PubMed  Google Scholar 

van de Donk NW, Dhimolea E. Brentuximab vedotin. MAbs. 2012;4(4):458–65.

Article  PubMed  PubMed Central  Google Scholar 

Li F, et al. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res. 2016;76(9):2710–9.

Article  CAS  PubMed  Google Scholar 

Doronina SO, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol. 2003;21(7):778–84.

Article  CAS  PubMed  Google Scholar 

Shim H. Bispecific antibodies and antibody-drug conjugates for cancer therapy: technological considerations. Biomolecules. 2020;10(3):360.

Article  Google Scholar 

Smith JA, et al. The structural basis for in situ activation of DNA alkylation by duocarmycin SA. J Mol Biol. 2000;300(5):1195–204.

Article  CAS  PubMed  Google Scholar 

Lambert JM, Berkenblit A. Antibody-drug conjugates for cancer treatment. Annu Rev Med. 2018;69:191–207.

Article  CAS  PubMed  Google Scholar 

Fu Y, Ho M. DNA damaging agent-based antibody-drug conjugates for cancer therapy. Antib Ther. 2018;1(2):33–43.

PubMed  Google Scholar 

Iwata TN, et al. A HER2-targeting antibody-drug conjugate, Trastuzumab Deruxtecan (DS-8201a), enhances antitumor immunity in a mouse model. Mol Cancer Ther. 2018;17(7):1494–503.

Article  CAS  PubMed  Google Scholar 

Kupchan SM, et al. Tumor inhibitors LXXIII Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus. J Am Chem Soc. 1972;94(4):1354–6.

Article  CAS  PubMed  Google Scholar 

Wang DF, Liu ZP. Tubulin maytansine site binding ligands and their applications as MTAs and ADCs for cancer therapy. Curr Med Chem. 2020;27(27):4567-76.

Article  PubMed  Google Scholar 

Prota AE, et al. A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proc Natl Acad Sci USA. 2014;111(38):13817–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Widdison W, et al. Metabolites of antibody-maytansinoid conjugates: characteristics and in vitro potencies. Mol Pharm. 2015;12(6):1762–73.

Article  CAS  PubMed  Google Scholar 

Chen H, et al. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy. Molecules. 2017. https://doi.org/10.3390/molecules22081281.

Article 

留言 (0)

沒有登入
gif