Expression of mammalian cell entry genes in clinical isolates of M. tuberculosis and the cell entry potential and immunological reactivity of the Rv0590A protein

Global Tuberculosis Report, Geneva (2020) World Health Organization

Rook G, Bloom BR (1994) Mechanisms of Pathogenesis in Tuberculosis, Bloom BR (Editor), ASM Press, Washington

Hernández-Pando R, Jeyanathan M, Mengistu G, Aguilar D, Orozco H, Harboe M et al (2000) Persistence of DNA from Mycobacterium Tuberculosis in superficially normal lung tissue during latent infection. Lancet 356(9248):2133–2138. https://doi.org/10.1016/s0140-6736(00)03493-0

Article  PubMed  Google Scholar 

Ernst JD (1998) Macrophage receptors for Mycobacterium Tuberculosis. Infect Immun 66(4):1277–1281. https://doi.org/10.1128/IAI.66.4.1277-1281.1998

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D et al (1998) Deciphering the biology of Mycobacterium Tuberculosis from the complete genome sequence. Nature 393(6685):537–544. https://doi.org/10.1038/31159

Article  CAS  PubMed  Google Scholar 

Chitale S, Ehrt S, Kawamura I, Fujimura T, Shimono N, Anand N et al (2001) Recombinant Mycobacterium tuberculosis protein associated with mammalian cell entry. Cell Microbiol 3(4):247–254. https://doi.org/10.1046/j.1462-5822.2001.00110.x

Article  CAS  PubMed  Google Scholar 

Singh P, Katoch VM, Mohanty KK, Chauhan DS (2016) Analysis of expression profile of mce operon genes (Mce1, Mce2, Mce3 Operon) in Different Mycobacterium Tuberculosis Isolates at different growth phases. Indian J Med Res 143(4):487–494. https://doi.org/10.4103/0971-5916.184305

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arruda S, Bomfim G, Knights R, Huima-Byron T, Riley LW (1993) Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261(5127):1454–1457. https://doi.org/10.1126/science.8367727

Article  CAS  PubMed  Google Scholar 

Casali N, Konieczny M, Schmidt MA, Riley LW (2002) Invasion activity of a M. tuberculosis peptide presented by the Escherichia coli AIDA autotransporter. Infect Immun 70(12):6846–6852. https://doi.org/10.1128/IAI.70.12.6846-6852.2002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uchida Y, Casali N, White A, Morici L, Kendall LV, Riley LW (2007) Accelerated immunopathological response of mice infected with M. tuberculosis disrupted in the Mce1 operon negative transcriptional regulator. Cell Microbiol 9(5):1275–1283. https://doi.org/10.1111/j.1462-5822.2006.00870.x

Article  CAS  PubMed  Google Scholar 

Senaratne RH, Sidders B, Sequeira P, Saunders G, Dunphy K, Marjanovic O et al (2008) M. tuberculosis strains disrupted in Mce3 and Mce4 operons are attenuated in mice. J Med Microbiol 57(2):164–170. https://doi.org/10.1099/jmm.0.47454-0

Article  CAS  PubMed  Google Scholar 

Saini NK, Sharma M, Chandolia A, Pasricha R, Brahmachari V, Bose M (2008) Characterization of Mce4A protein of M. tuberculosis: role in invasion and survival. BMC Microbiol 8(1):200. https://doi.org/10.1186/1471-2180-8-200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitra D, Saha B, Das D, Wiker HG, Das AK (2005) Correlating sequential homology of Mce1A, Mce2A, Mce3A and Mce4A with their possible functions in mammalian cell entry of M. tuberculosis performing homology modeling. Tuberculosis (Edinb) 85:337–345

Article  CAS  PubMed  Google Scholar 

Zhang F, Xie JP (2011) Mammalian cell entry gene family of M. tuberculosis. Mol Cell Biochem 352(1–2):1–10. https://doi.org/10.1007/s11010-011-0733-5

Article  CAS  PubMed  Google Scholar 

Ahmad S, Shazly E, Mustafa S, Al Attiyah R (2005) The six mammalian cell entry proteins (Mce3A-F) encoded by the Mce3 operon are expressed during in vitro growth of M. tuberculosis. Scandinavian J Immunol 62(1):16–24

Article  CAS  Google Scholar 

Marjanovic O, Miyata T, Goodridge A, Kendall LV, Riley LW (2010) Mce2 operon mutant strain of M. tuberculosis is attenuated in C57BL/6 mice. Tuberculosis (Edinb) 90(1):50–56. https://doi.org/10.1016/j.tube.2009.10.004

Article  CAS  PubMed  Google Scholar 

Flesselles B, Anand NN, Remani J, Loosmore SM, Klein MH (1999) Disruption of the mycobacterial cell entry gene of Mycobacterium Bovis BCG results in a mutant that exhibits a reduced invasiveness for epithelial cells. FEMS Microbiol Lett 177(2):237–242. https://doi.org/10.1016/s0378-1097(99)00301-8

Article  CAS  PubMed  Google Scholar 

Kumar A, Chandolia A, Chaudhry U, Brahmachari V, Bose M (2005) Comparison of mammalian cell entry operons of mycobacteria: in silico analysis and expression profiling. FEMS Immunol Med Microbiol 43(2):185–195. https://doi.org/10.1016/j.femsim.2004.08.013

Article  CAS  PubMed  Google Scholar 

Sarkar R, Lenders L, Wilkinson KA, Wilkinson RJ, Nicol MP (2012) Modern lineages of M. tuberculosis exhibit lineage-specific patterns of growth and cytokine induction in human monocyte-derived macrophages. PLoS One 7(8):e43170. https://doi.org/10.1371/journal.pone.0043170

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kent PT, Kubica GP (1985) Public Health Mycobacteriology: A Guide for the Level III Laboratory; Center for Diseases Control: Atlanta. 2

Vestal AL (1975) Procedures for the Isolation and Identification of Mycobacteria. US Department of Health Education and Welfare, Washington D C, pp 41–63

Google Scholar 

Shrivastava K, Garima K, Narang A, Bhattacharyya K, Vishnoi E, Singh RK (2017) Rv1458c: a new diagnostic marker for identification of M. tuberculosis complex in a novel duplex PCR assay. J Med Microbiol 66(3):371–376. https://doi.org/10.1099/jmm.0.000440

Article  CAS  PubMed  Google Scholar 

Hänscheid T, Ribeiro CM, Shapiro HM, Perlmutter NG (2007) Fluorescence microscopy for tuberculosis diagnosis. Lancet Infect Dis 7(4):236–237. https://doi.org/10.1016/S1473-3099(07)70058-0

Article  PubMed  Google Scholar 

Harley PJ (2004) INLaboratory Exercises in Microbiology; McGraw-Hill Higher Education: Aurora, illinois, USA

Narang A, Giri A, Gupta S, Garima K, Bose M, Varma-Basil M (2017) Contribution of putative efflux pump genes to isoniazid Resistance in clinical isolates of M. tuberculosis. Int J Mycobacteriol 6(2):177. https://doi.org/10.4103/ijmy.ijmy_26_17

Article  CAS  PubMed  Google Scholar 

Garima K, Pathak R, Tandon R, Rathor N, Sinha R, Bose M, Varma-Basil M (2015) differential expression of efflux pump genes of M. tuberculosis in response to varied subinhibitory concentrations of antituberculosis agents. Tuberculosis (Edinb) 95(2):155–161. https://doi.org/10.1016/j.tube.2015.01.005

Article  CAS  PubMed  Google Scholar 

Masiewicz P, Brzostek A, Wolański M, Dziadek J, Zakrzewska-Czerwińska J (2012) A novel role of the PrpR as a transcription factor involved in the regulation of methylcitrate pathway in M. tuberculosis. PLoS One. https://doi.org/10.1371/journal.pone.0043651

Article  PubMed  PubMed Central  Google Scholar 

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

Article  CAS  PubMed  Google Scholar 

Bustin S, Huggett J (2017) qPCR primer design revisited. Biomol Detect Quantif 14:19–28. https://doi.org/10.1016/j.bdq.2017.11.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen HB, Chou KC (2009) Gpos-MPLoc: a top-down approach to improve the quality of predicting subcellular localization of gram-positive bacterial proteins. Protein Pept Lett 16(12):1478–1484. https://doi.org/10.2174/092986609789839322

Article  CAS  PubMed  Google Scholar 

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J et al (2019) STRING V11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613. https://doi.org/10.1093/nar/gky1131

Article  CAS  PubMed  Google Scholar 

Kambayashi T, Laufer TM (2014) Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat Rev Immunol 14(11):719–730. https://doi.org/10.1038/nri3754

Article  CAS  PubMed  Google Scholar 

Fleri W, Paul S, Dhanda SK, Mahajan S, Xu X, Peters B, Sette A (2017) The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front Immunol 8:278. https://doi.org/10.3389/fimmu.2017.00278

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nielsen M, Lundegaard C, Lund O (2007) Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinform 8(1):238. https://doi.org/10.1186/1471-2105-8-238

Article  CAS  Google Scholar 

Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8(1):4. https://doi.org/10.1186/1471-2105-8-4

Article  CAS  Google Scholar 

Rapin N, Lund O, Bernaschi M, Castiglione F (2010) Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS One 5(4):e9862. https://doi.org/10.1371/journal.pone.0009862

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif