Eicosapentaenoic acid influences the pathogenesis of Candida albicans in Caenorhabditis elegans via inhibition of hyphal formation and stimulation of the host immune response

Kumar P, Lee JH, Beyenal H, Lee J (2020) Fatty acids as antibiofilm and antivirulence agents. Trends Microbiol 28:753–768

Article  CAS  PubMed  Google Scholar 

Ruxton CH, Reed SC, Simpson MJ, Millington JK (2004) The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J Hum Nutr Diet 17:449–459

Article  CAS  PubMed  Google Scholar 

Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21(6):495–505

Article  CAS  PubMed  Google Scholar 

Oppedisano F, Macrì R, Gliozzi M, Musolino V, Carresi C, Maiuolo J, Bosco F, Nucera S, Caterina Zito M, Guarnieri L et al (2020) The anti-inflammatory and antioxidant properties of n-3 PUFAs: their role in cardiovascular protection. Biomedicines 8(9):306

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nienaber A, Baumgartner J, Dolman RC, Ozturk M, Zandberg L, Hayford F, Brombacher F, Blaauw R, Parihar SP, Smuts CM, Malan L (2020) Omega-3 Fatty acid and iron supplementation alone, but not in combination, lower inflammation and anemia of infection in Mycobacterium tuberculosis-infected mice. Nutrients 12(9):2897

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nienaber A, Ozturk M, Dolman R, Blaauw R, Zandberg LL, van Rensburg S, Britz M, Hayford F, Brombacher F, Loots DT, Smuts CM, Parihar SP, Malan L (2022) n-3 long-chain PUFA promote antibacterial and inflammation-resolving effects in Mycobacterium tuberculosis-infected C3HeB/FeJ mice, dependent on fatty acid status. The Br J Nutr 127(3):384–397

Article  CAS  PubMed  Google Scholar 

Desbois A, Smith V (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85:1629–1642

Article  CAS  PubMed  Google Scholar 

Bergsson G, Steingrímsson Ó, Thormar H (1999) In vitro susceptibilities of Neisseria gonorrhoeae to fatty acids and monoglycerides. Antimicrob Agents Chemother 43:2790–2792

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin SY, Bajpai VK, Kim HR, Kang SC (2007) Antibacterial activity of bioconverted eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) against foodborne pathogenic bacteria. Int J Food Microbiol 113:233–236

Article  CAS  PubMed  Google Scholar 

Tiesset H, Pierre M, Desseyn JL, Guéry B, Beermann C, Galabert C, Gottrand F, Husson MO (2009) Dietary (n-3) polyunsaturated fatty acids affect the kinetics of pro- and anti-inflammatory responses in mice with Pseudomonas aeruginosa lung infection. J Nutr 139:82–89

Article  CAS  PubMed  Google Scholar 

Mil-Homens D, Rocha EPC, Fialho AM (2010) Genome-wide analysis of DNA repeats in Burkholderia cenocepacia J2315 identifies a novel adhesin-like gene unique to epidemic-associated strains of the ET-12 lineage. Microbiology 156:1084–1096

Article  CAS  PubMed  Google Scholar 

Correia M, Michel V, Matos AA, Carvalho P, Oliveira MJ, Ferreira RM, Dillies MA, Huerre M, Seruca R, Figueiredo C, Machado JC, Touati E (2012) Docosahexaenoic acid inhibits Helicobacter pylori growth in vitro and mice gastric mucosa colonization. PLoS ONE 7:e35072

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murzyn A, Krasowska A, Stefanowicz P, Dziadkowiec D, Lukaszewicz M (2010) Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PLoS ONE 5:e12050

Article  PubMed  PubMed Central  Google Scholar 

Thibane VS, Kock JLF, Ells R, Van Wyk PWJ, Pohl CH (2010) Effect of marine polyunsaturated fatty acids on biofilm formation of Candida albicans and Candida dubliniensis. Mar Drugs 8:2597–2604

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thibane VS, Ells R, Hugo A, Albertyn J, Janse van Rensburg WJ, Van Wyk PWJ, Kock JLF, Pohl CH (2012) Polyunsaturated fatty acids cause apoptosis in C. albicans and C. dubliniensis biofilms. Biochim Biophys Acta Gen Subj 1820:1463–1468

Article  CAS  Google Scholar 

Prasath KG, Sethupathy S, Pandian SK (2019) Proteomic analysis uncovers the modulation of ergosterol, sphingolipid and oxidative stress pathway by myristic acid impeding biofilm and virulence in Candida albicans. J Proteom 208:103503

Article  CAS  Google Scholar 

Jamiu AT, Albertyn J, Sebolai O, Gcilitshana O, Pohl CH (2021) Inhibitory effect of polyunsaturated fatty acids alone or in combination with fluconazole on Candida krusei biofilms in vitro and in Caenorhabditis elegans. Med Mycol 59:1225–1237

Article  CAS  PubMed  Google Scholar 

Davies DG, Marques CNH (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403

Article  CAS  PubMed  Google Scholar 

Kim YG, Lee JH, Raorane CJ, Oh ST, Park JG, Lee J (2018) Herring oil and omega fatty acids inhibit Staphylococcus aureus biofilm formation and virulence. Front Microbiol 9:1241

Article  PubMed  PubMed Central  Google Scholar 

Ramanathan S, Ravindran D, Arunachalam K, Arumugam VR (2018) Inhibition of quorum sensing-dependent biofilm and virulence genes expression in environmental pathogen Serratia marcescens by petroselinic acid. Antonie Van Leeuwenhoek 111:501–515

Article  CAS  PubMed  Google Scholar 

Santhakumari S, Nilofernisha NM, Ponraj JG, Pandian SK, Ravi A (2017) In vitro and in vivo exploration of palmitic acid from Synechococcus elongata as an antibiofilm agent on the survival of Artemia franciscana against virulent vibrios. J Invertebr Pathol 150:21–31

Article  CAS  PubMed  Google Scholar 

Caron E, Desseyn JL, Sergent L, Bartke N, Husson MO, Duhamel A, Gottrand F (2015) Impact of fish oils on the outcomes of a mouse model of acute Pseudomonas aeruginosa pulmonary infection. Br J Nutr 7:1–9

Google Scholar 

Madende M, Albertyn J, Sebolai O, Pohl CH (2020) Caenorhabditis elegans as a model animal for investigating fungal pathogenesis. Med Microbiol Immunol 209:1–13

Article  CAS  PubMed  Google Scholar 

Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

Article  CAS  PubMed  PubMed Central  Google Scholar 

Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, Mylonakis E (2007) Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog 3:e18

Article  PubMed  PubMed Central  Google Scholar 

TeKippe M, Aballay A (2010) C. elegans germline-deficient mutants respond to pathogen infection using shared and distinct mechanisms. PLoS ONE 26:e11777

Article  Google Scholar 

Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, Inoue H, Tanaka-Hino M, Hisamoto N, Matsumoto K, Tan MW, Ausubel FM (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297:623–626

Article  CAS  PubMed  Google Scholar 

Deline ML, Vrablik TL, Watts JL (2013) Dietary supplementation of polyunsaturated fatty acids in Caenorhabditis elegans. J Vis Exp 81:e50879

Google Scholar 

Díaz MT, Álvarez I, De la Fuente J, Sañudo C, Campo MM, Oliver MA, Font i Furnols M, Montossi F, San R (2005) Fatty acid composition of meat from typical lamb production systems of Spain, United Kingdom, Germany and Uruguay. Meat Sci 71:256–263

Article  PubMed  Google Scholar 

Jenkins WR (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis Rep 48:692

Google Scholar 

Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, Fell HP, Ferree S, George RD, Grogan T, James JJ, Maysuria M, Mitton JD, Oliveri P, Osborn JL, Peng T, Ratcliffe AL, Webster PJ, Davidson EH, Hood L, Dimitrov K (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26:317–325

Article  CAS  PubMed  Google Scholar 

Nailis H, Coenye T, Van Nieuwerburgh F, Deforce D, Nelis HJ (2006) Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol Biol 7:25

Article  PubMed  PubMed Central  Google Scholar 

Tao J, Hao Y, Li X, Yin H, Nie X, Zhang J, Xu B, Chen Q, Li B (2020) Systematic identification of housekeeping genes possibly used as references in Caenorhabditis elegans by large-scale data integration. Cells 9:786

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vediyappan G, Dumontet V, Pelissie F, d’Enfert C (2013) Gymnemic acids inhibit hyphal growth and virulence in Candida albicans. PLoS ONE 8:e74189

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noverr MC, Huffnagle GB (2004) Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun 72:6206–6210

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tampakakis E, Okoli I, Mylonakis E (2008) A C. elegans-based, whole animal, in vivo screen for the identification of antifungal compounds. Nat Protoc 3:1925–1931

Comments (0)

No login
gif