Kumar P, Lee JH, Beyenal H, Lee J (2020) Fatty acids as antibiofilm and antivirulence agents. Trends Microbiol 28:753–768
Article CAS PubMed Google Scholar
Ruxton CH, Reed SC, Simpson MJ, Millington JK (2004) The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J Hum Nutr Diet 17:449–459
Article CAS PubMed Google Scholar
Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21(6):495–505
Article CAS PubMed Google Scholar
Oppedisano F, Macrì R, Gliozzi M, Musolino V, Carresi C, Maiuolo J, Bosco F, Nucera S, Caterina Zito M, Guarnieri L et al (2020) The anti-inflammatory and antioxidant properties of n-3 PUFAs: their role in cardiovascular protection. Biomedicines 8(9):306
Article CAS PubMed PubMed Central Google Scholar
Nienaber A, Baumgartner J, Dolman RC, Ozturk M, Zandberg L, Hayford F, Brombacher F, Blaauw R, Parihar SP, Smuts CM, Malan L (2020) Omega-3 Fatty acid and iron supplementation alone, but not in combination, lower inflammation and anemia of infection in Mycobacterium tuberculosis-infected mice. Nutrients 12(9):2897
Article CAS PubMed PubMed Central Google Scholar
Nienaber A, Ozturk M, Dolman R, Blaauw R, Zandberg LL, van Rensburg S, Britz M, Hayford F, Brombacher F, Loots DT, Smuts CM, Parihar SP, Malan L (2022) n-3 long-chain PUFA promote antibacterial and inflammation-resolving effects in Mycobacterium tuberculosis-infected C3HeB/FeJ mice, dependent on fatty acid status. The Br J Nutr 127(3):384–397
Article CAS PubMed Google Scholar
Desbois A, Smith V (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85:1629–1642
Article CAS PubMed Google Scholar
Bergsson G, Steingrímsson Ó, Thormar H (1999) In vitro susceptibilities of Neisseria gonorrhoeae to fatty acids and monoglycerides. Antimicrob Agents Chemother 43:2790–2792
Article CAS PubMed PubMed Central Google Scholar
Shin SY, Bajpai VK, Kim HR, Kang SC (2007) Antibacterial activity of bioconverted eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) against foodborne pathogenic bacteria. Int J Food Microbiol 113:233–236
Article CAS PubMed Google Scholar
Tiesset H, Pierre M, Desseyn JL, Guéry B, Beermann C, Galabert C, Gottrand F, Husson MO (2009) Dietary (n-3) polyunsaturated fatty acids affect the kinetics of pro- and anti-inflammatory responses in mice with Pseudomonas aeruginosa lung infection. J Nutr 139:82–89
Article CAS PubMed Google Scholar
Mil-Homens D, Rocha EPC, Fialho AM (2010) Genome-wide analysis of DNA repeats in Burkholderia cenocepacia J2315 identifies a novel adhesin-like gene unique to epidemic-associated strains of the ET-12 lineage. Microbiology 156:1084–1096
Article CAS PubMed Google Scholar
Correia M, Michel V, Matos AA, Carvalho P, Oliveira MJ, Ferreira RM, Dillies MA, Huerre M, Seruca R, Figueiredo C, Machado JC, Touati E (2012) Docosahexaenoic acid inhibits Helicobacter pylori growth in vitro and mice gastric mucosa colonization. PLoS ONE 7:e35072
Article CAS PubMed PubMed Central Google Scholar
Murzyn A, Krasowska A, Stefanowicz P, Dziadkowiec D, Lukaszewicz M (2010) Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PLoS ONE 5:e12050
Article PubMed PubMed Central Google Scholar
Thibane VS, Kock JLF, Ells R, Van Wyk PWJ, Pohl CH (2010) Effect of marine polyunsaturated fatty acids on biofilm formation of Candida albicans and Candida dubliniensis. Mar Drugs 8:2597–2604
Article CAS PubMed PubMed Central Google Scholar
Thibane VS, Ells R, Hugo A, Albertyn J, Janse van Rensburg WJ, Van Wyk PWJ, Kock JLF, Pohl CH (2012) Polyunsaturated fatty acids cause apoptosis in C. albicans and C. dubliniensis biofilms. Biochim Biophys Acta Gen Subj 1820:1463–1468
Prasath KG, Sethupathy S, Pandian SK (2019) Proteomic analysis uncovers the modulation of ergosterol, sphingolipid and oxidative stress pathway by myristic acid impeding biofilm and virulence in Candida albicans. J Proteom 208:103503
Jamiu AT, Albertyn J, Sebolai O, Gcilitshana O, Pohl CH (2021) Inhibitory effect of polyunsaturated fatty acids alone or in combination with fluconazole on Candida krusei biofilms in vitro and in Caenorhabditis elegans. Med Mycol 59:1225–1237
Article CAS PubMed Google Scholar
Davies DG, Marques CNH (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403
Article CAS PubMed Google Scholar
Kim YG, Lee JH, Raorane CJ, Oh ST, Park JG, Lee J (2018) Herring oil and omega fatty acids inhibit Staphylococcus aureus biofilm formation and virulence. Front Microbiol 9:1241
Article PubMed PubMed Central Google Scholar
Ramanathan S, Ravindran D, Arunachalam K, Arumugam VR (2018) Inhibition of quorum sensing-dependent biofilm and virulence genes expression in environmental pathogen Serratia marcescens by petroselinic acid. Antonie Van Leeuwenhoek 111:501–515
Article CAS PubMed Google Scholar
Santhakumari S, Nilofernisha NM, Ponraj JG, Pandian SK, Ravi A (2017) In vitro and in vivo exploration of palmitic acid from Synechococcus elongata as an antibiofilm agent on the survival of Artemia franciscana against virulent vibrios. J Invertebr Pathol 150:21–31
Article CAS PubMed Google Scholar
Caron E, Desseyn JL, Sergent L, Bartke N, Husson MO, Duhamel A, Gottrand F (2015) Impact of fish oils on the outcomes of a mouse model of acute Pseudomonas aeruginosa pulmonary infection. Br J Nutr 7:1–9
Madende M, Albertyn J, Sebolai O, Pohl CH (2020) Caenorhabditis elegans as a model animal for investigating fungal pathogenesis. Med Microbiol Immunol 209:1–13
Article CAS PubMed Google Scholar
Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94
Article CAS PubMed PubMed Central Google Scholar
Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, Mylonakis E (2007) Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog 3:e18
Article PubMed PubMed Central Google Scholar
TeKippe M, Aballay A (2010) C. elegans germline-deficient mutants respond to pathogen infection using shared and distinct mechanisms. PLoS ONE 26:e11777
Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, Inoue H, Tanaka-Hino M, Hisamoto N, Matsumoto K, Tan MW, Ausubel FM (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297:623–626
Article CAS PubMed Google Scholar
Deline ML, Vrablik TL, Watts JL (2013) Dietary supplementation of polyunsaturated fatty acids in Caenorhabditis elegans. J Vis Exp 81:e50879
Díaz MT, Álvarez I, De la Fuente J, Sañudo C, Campo MM, Oliver MA, Font i Furnols M, Montossi F, San R (2005) Fatty acid composition of meat from typical lamb production systems of Spain, United Kingdom, Germany and Uruguay. Meat Sci 71:256–263
Jenkins WR (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis Rep 48:692
Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, Fell HP, Ferree S, George RD, Grogan T, James JJ, Maysuria M, Mitton JD, Oliveri P, Osborn JL, Peng T, Ratcliffe AL, Webster PJ, Davidson EH, Hood L, Dimitrov K (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26:317–325
Article CAS PubMed Google Scholar
Nailis H, Coenye T, Van Nieuwerburgh F, Deforce D, Nelis HJ (2006) Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol Biol 7:25
Article PubMed PubMed Central Google Scholar
Tao J, Hao Y, Li X, Yin H, Nie X, Zhang J, Xu B, Chen Q, Li B (2020) Systematic identification of housekeeping genes possibly used as references in Caenorhabditis elegans by large-scale data integration. Cells 9:786
Article CAS PubMed PubMed Central Google Scholar
Vediyappan G, Dumontet V, Pelissie F, d’Enfert C (2013) Gymnemic acids inhibit hyphal growth and virulence in Candida albicans. PLoS ONE 8:e74189
Article CAS PubMed PubMed Central Google Scholar
Noverr MC, Huffnagle GB (2004) Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun 72:6206–6210
Article CAS PubMed PubMed Central Google Scholar
Tampakakis E, Okoli I, Mylonakis E (2008) A C. elegans-based, whole animal, in vivo screen for the identification of antifungal compounds. Nat Protoc 3:1925–1931
Comments (0)