Osteocyte Mechanotransduction in Orthodontic Tooth Movement

McCormack SW, Witzel U, Watson PJ, Fagan MJ, Gröning F. The biomechanical function of periodontal ligament fibres in orthodontic tooth movement. PLoS ONE. 2014;9:e102387–99. https://doi.org/10.1371/journal.pone.0102387.

Article  CAS  PubMed  PubMed Central  Google Scholar 

•• Li Y, Zhan Q, Bao M, Yi J, Li Y. Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade. Int J Oral Sci. 2021;13:20–37. https://doi.org/10.1038/s41368-021-00125-5. This is a comprehensive review of current studies explaining the hypothetic theory of the mechanisms underlying orthodontic tooth movement mainly through biomechanical events, and introducing developments of current study models and clinical applications.

Article  PubMed  PubMed Central  Google Scholar 

Cuoghi OA, Tondelli PM, Mendonça MR, Aiello CA, Da Costa SC, Tanaka OM. Effect of different types of force on the amount of tooth movement, hyaline areas, and root resorption in rats. Eur J Gen Dent. 2018;7:66–71. https://doi.org/10.4103/ejgd.ejgd_89_18.

Article  Google Scholar 

Haas AN, Pannuti CM, Andrade AKP, Escobar EC, Almeida ER, Costa FO, Cortelli JR, Cortelli SC, Rode SD, Pedrazzi V, et al. Mouthwashes for the control of supragingival biofilm and gingivitis in orthodontic patients: Evidence-based recommendations for clinicians. Braz Oral Res. 2014;28:1–8. https://doi.org/10.1590/1807-3107BOR-2014.vol28.0021.

Article  PubMed  Google Scholar 

Heymann GC, Tulloch JFC. Implantable devices as orthodontic anchorage: A review of current treatment modalities. J Esthet Restor Dent. 2006;18:68–79. https://doi.org/10.2310/6130.2006.00013_1.x.

Article  PubMed  Google Scholar 

Erbe C, Heger S, Kasaj A, Berres M, Wehrbein H. Orthodontic treatment in periodontally compromised patients: A systematic review. Clin Oral Investig. 2022;27:79–89. https://doi.org/10.1007/s00784-022-04822-1.

Article  PubMed  PubMed Central  Google Scholar 

Bhardwaj A, Kumar Sharma A, Mishra K, Jeswani R. Skeletal anchorage system [miniplates] - An orthodontic perspective - A review. Acta Sci Dent Sci. 2020;4:3–10. https://doi.org/10.31080/ASDS.2020.04.0932.

Article  Google Scholar 

Ali MJ, Bhardwaj A, Khan MS, Alwadei F, Gufran K, Alqahtani AS, Alqhtani NR, Alasqah M, Alsakr AM, Alghabban RO. Evaluation of stress distribution of maxillary anterior egment during en masse retraction using posterior mini screw: A finite element study. Appl Sci. 2022;12:10372–84. https://doi.org/10.3390/app122010372.

Article  CAS  Google Scholar 

Pereira Alexandre L, Nava Lopes Cançado L, Renato Jordão C. Absolute orthodontic anchorage: A brief review. Int J Appl Dent Sci. 2019;5:152–5.

Google Scholar 

Schätzle M, Männchen R, Zwahlen M, Lang NP. Survival and failure rates of orthodontic temporary anchorage devices: A systematic review. Clin Oral Implants Res. 2009;20:1351–9. https://doi.org/10.1111/j.1600-0501.2009.01754.x.

Article  PubMed  Google Scholar 

Li Y, Jacox LA, Little SH, Ko CC. Orthodontic tooth movement: The biology and clinical implications. Kaohsiung J Med Sci. 2018;34:207–14. https://doi.org/10.1016/j.kjms.2018.01.007.

Article  PubMed  Google Scholar 

Hadjidakis DJ, Androulakis II. Bone remodeling. Ann NY Acad Sci. 2006;1092:385–96. https://doi.org/10.1196/annals.1365.035.

Article  CAS  PubMed  Google Scholar 

Bouchard AL, Dsouza C, Julien C, Rummler M, Gaumond M-H, Cermakian N, Willie BM. Bone adaptation to mechanical loading in mice is affected by circadian rhythms. Bone. 2022;154:116218–31. https://doi.org/10.1016/j.bone.2021.116218.

Article  CAS  PubMed  Google Scholar 

Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S. Mechanosensation and transduction in osteocytes. Bone. 2013;54:182–90. https://doi.org/10.1016/j.bone.2012.10.013.

Article  CAS  PubMed  Google Scholar 

Bacabac RG, Mizuno D, Schmidt CF, MacKintosh FC, Van Loon JJWA, Klein-Nulend J, Smit TH. Round versus flat: Bone cell morphology, elasticity, and mechanosensing. J Biomech. 2008;41:1590–8. https://doi.org/10.1016/j.jbiomech.2008.01.031.

Article  PubMed  Google Scholar 

• Wu V, van Oers RFM, Schulten EAJM, Helder MN, Bacabac RG, Klein-Nulend J. Osteocyte morphology and orientation in relation to strain in the jaw bone. Int J Oral Sci. 2018;10:2–9. https://doi.org/10.1038/s41368-017-0007-5. This study indicates that osteocytes with different surface area and orientation in maxillary bone are related to the magnitude and orientation of mechanical force.

Article  PubMed  PubMed Central  Google Scholar 

Turner CH. Three rules for bone adaptation to mechanical stimuli. Bone. 1998;23:399–407. https://doi.org/10.1016/S8756-3282(98)00118-5.

Article  CAS  PubMed  Google Scholar 

Kalyanaraman H, Pal China S, Cabriales JA, Moininazeri J, Casteel DE, Garcia JJ, Wong VW, Chen A, Sah RL, Boss GR, et al. Protein kinase G2 is essential for skeletal homeostasis and adaptation to mechanical loading in male but not female mice. J Bone Miner Res. 2023;38:171–85. https://doi.org/10.1002/jbmr.4746.

Article  CAS  PubMed  Google Scholar 

• Haxhi J, Mattia L, Vitale M, Pisarro M, Conti F, Pugliese G. Effects of physical activity/exercise on bone metabolism, bone mineral density and fragility fractures. Int J Bone Fragility. 2022;2:20–4. https://doi.org/10.57582/IJBF.220201.020. This study shows the effects of mechanical loading on bone metabolism, bone mineral density, and fragility fractures.

Article  Google Scholar 

Kumar G, Narayan B. Regulation of bone formation by applied dynamic loads. In Classic Papers in Orthopaedics; Springer London: London, 2014; pp. 511–513.

Gabel L, Liphardt A-M, Hulme PA, Heer M, Zwart SR, Sibonga JD, Smith SM, Boyd SK. Pre-flight exercise and bone metabolism predict unloading-induced bone loss due to spaceflight. Br J Sports Med. 2022;56:196–203. https://doi.org/10.1136/bjsports-2020-103602.

Article  PubMed  Google Scholar 

Kameo Y, Miya Y, Hayashi M, Nakashima T, Adachi T. In silico experiments of bone remodeling explore metabolic diseases and their drug treatment. Sci Adv. 2020;6:1–10. https://doi.org/10.1126/sciadv.aax0938.

Article  Google Scholar 

Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8:455–98. https://doi.org/10.1146/annurev.bioeng.8.061505.095721.

Article  CAS  PubMed  Google Scholar 

Bauer TW, Muschler GF. Bone graft materials. Clin Orthop Relat Res. 2000;371:10–27. https://doi.org/10.1097/00003086-200002000-00003.

Article  Google Scholar 

•• Kirschneck C, Bauer M, Gubernator J, Proff P, Schröder A. Comparative assessment of mouse models for experimental orthodontic tooth movement. Sci Rep. 2020;10:12154. https://doi.org/10.1038/s41598-020-69030-x. This study provides comparative assessment of mouse models for experimental orthodontic tooth movement.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science. 2000;289:1508–14. https://doi.org/10.1126/science.289.5484.1508.

Article  CAS  PubMed  Google Scholar 

Tsourdi E, Jähn K, Rauner M, Busse B, Bonewald LF. Physiological and pathological osteocytic osteolysis. J Musculoskelet Neuronal Interact. 2018;18:292–303.

CAS  PubMed  PubMed Central  Google Scholar 

Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8:455–98. https://doi.org/10.1146/annurev.bioeng.8.061505.095721.

Article  CAS  PubMed  Google Scholar 

Altay B, Dede EÇ, Özgul Ö, Atıl F, Koçyiğit İD, Orhan K, Tekin U, Korkusuz P, Önder ME. Effect of systemic oxytocin administration on new bone formation and distraction rate in rabbit mandible. J Oral Maxillofac Surg. 2020;78:1171–82. https://doi.org/10.1016/j.joms.2020.03.005.

Article  PubMed  Google Scholar 

Pereira LJ, Macari S, Coimbra CC, Pereira TDSF, Barrioni BR, Gomez RS, Silva TA, Paiva SM. Aerobic and resistance training improve alveolar bone quality and interferes with bone-remodeling during orthodontic tooth movement in mice. Bone. 2020;138:115496–506. https://doi.org/10.1016/j.bone.2020.115496.

Article  CAS  PubMed  Google Scholar 

Zhang X, Chen D, Zheng J, Deng L, Chen Z, Ling J, Wu L. Effect of microRNA-21 on hypoxia-inducible factor-1α in orthodontic tooth movement and human periodontal ligament cells under hypoxia. Exp Ther Med. 2019;17:2830–6. https://doi.org/10.3892/etm.2019.7248.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marahleh A, Kitaura H, Ohori F, Noguchi T, Nara Y, Pramusita A, Kinjo R, Ma J, Kanou K, Mizoguchi I. Effect of TNF-α on osteocyte RANKL expression during orthodontic tooth movement. J Dent Sci. 2021;16:1191–7. https://doi.org/10.1016/j.jds.2021.03.006.

Article  PubMed  PubMed Central  Google Scholar 

Tan SD, Kuijpers-Jagtman AM, Semeins CM, Bronckers ALJJ, Maltha JC, Von Den Hoff JW, Everts V, Klein-Nulend J. Fluid shear stress inhibits TNFα-induced osteocyte apoptosis. J Dent Res. 2006;85:905–9. https://doi.org/10.1177/154405910608501006.

Article  CAS  PubMed  Google Scholar 

Tan SD, de Vries TJ, Kuijpers-Jagtman AM, Semeins CM, Everts V, Klein-Nulend J. Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone. 2007;41:745–51. https://doi.org/10.1016/j.bone.2007.07.019.

Article  CAS  PubMed  Google Scholar 

Bakker A, Klein-Nulend J, Burger E. Shear stress inhibits while disuse promotes osteocyte apoptosis. Biochem Biophys Res Commun. 2004;320:1163–8. https://doi.org/10.1016/j.bbrc.2004.06.056.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif