Jansson T, Powell TL. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci (Lond). 2007;113:1–13.
Article CAS PubMed Google Scholar
Kelly AC, Powell TL, Jansson T. Placental function in maternal obesity. Clin Sci (Lond). 2020;134:961–84.
Article CAS PubMed Google Scholar
Bridgman SL, Azad MB, Persaud RR, Chari RS, Becker AB, Sears MR, et al. Impact of maternal pre-pregnancy overweight on infant overweight at 1 year of age: associations and sex-specific differences. Pediatr Obes. 2018;13:579–89.
Article CAS PubMed Google Scholar
Fuemmeler BF, Zucker N, Sheng Y, Sanchez CE, Maguire R, Murphy SK, et al. Pre-pregnancy weight and symptoms of attention deficit hyperactivity disorder and executive functioning behaviors in preschool children. Int J Environ Res Public Health. 2019;16:667.
Article PubMed PubMed Central Google Scholar
Moss BG, Chugani DC. Increased risk of very low birth weight, rapid postnatal growth, and autism in underweight and obese mothers. Am J Health Promot. 2014;28:181–8.
Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R. Why are autism spectrum conditions more prevalent in males? PLoS Biol. 2011;9: e1001081.
Article CAS PubMed PubMed Central Google Scholar
Alves JM, Luo S, Chow T, Herting M, Xiang AH, Page KA. Sex differences in the association between prenatal exposure to maternal obesity and hippocampal volume in children. Brain Behav. 2020;10: e01522.
Article PubMed PubMed Central Google Scholar
Lynch KM, Alves JM, Chow T, Clark KA, Luo S, Toga AW, et al. Selective morphological and volumetric alterations in the hippocampus of children exposed in utero to gestational diabetes mellitus. Hum Brain Mapp. 2021;42:2583–92.
Article PubMed PubMed Central Google Scholar
Edlow AG. Maternal obesity and neurodevelopmental and psychiatric disorders in offspring. Prenat Diagn. 2017;37:95–110.
Contu L, Hawkes CA. A review of the impact of maternal obesity on the cognitive function and mental health of the offspring. Int J Mol Sci. 2017;18:1093.
Article PubMed PubMed Central Google Scholar
Haggarty P, Ashton J, Joynson M, Abramovich DR, Page K. Effect of maternal polyunsaturated fatty acid concentration on transport by the human placenta. Biol Neonate. 1999;75:350–9.
Article CAS PubMed Google Scholar
Gil-Sanchez A, Larque E, Demmelmair H, Acien MI, Faber FL, Parrilla JJ, et al. Maternal-fetal in vivo transfer of [13C]docosahexaenoic and other fatty acids across the human placenta 12 h after maternal oral intake. Am J Clin Nutr. 2010;92:115–22.
Article CAS PubMed Google Scholar
Perazzolo S, Hirschmugl B, Wadsack C, Desoye G, Lewis RM, Sengers BG. The influence of placental metabolism on fatty acid transfer to the fetus. J Lipid Res. 2017;58:443–54.
Article CAS PubMed PubMed Central Google Scholar
Gazquez A, Prieto-Sanchez MT, Blanco-Carnero JE, van Harskamp D, Perazzolo S, Oosterink JE, et al. In vivo kinetic study of materno-fetal fatty acid transfer in obese and normal weight pregnant women. J Physiol. 2019;597:4959–73.
Article CAS PubMed Google Scholar
Tomedi LE, Chang CC, Newby PK, Evans RW, Luther JF, Wisner KL, et al. Pre-pregnancy obesity and maternal nutritional biomarker status during pregnancy: a factor analysis. Public Health Nutr. 2013;16:1414–8.
Article PubMed PubMed Central Google Scholar
McNamara RK, Carlson SE. Role of omega-3 fatty acids in brain development and function: potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot Essent Fatty Acids. 2006;75:329–49.
Article CAS PubMed Google Scholar
Mao J, Zhang X, Sieli PT, Falduto MT, Torres KE, Rosenfeld CS. Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta. Proc Natl Acad Sci USA. 2010;107:5557–62.
Article CAS PubMed PubMed Central Google Scholar
Mir SA, Chen L, Burugupalli S, Burla B, Ji S, Smith AAT, et al. Population-based plasma lipidomics reveals developmental changes in metabolism and signatures of obesity risk: a mother-offspring cohort study. BMC Med. 2022;20:242.
Article CAS PubMed PubMed Central Google Scholar
Lands WE. Stories about acyl chains. Biochem Biophys Acta. 2000;1483:1–14.
Powell TL, Barner K, Madi L, Armstrong M, Manke J, Uhlson C, et al. Sex-specific responses in placental fatty acid oxidation, esterification and transfer capacity to maternal obesity. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866: 158861.
Article CAS PubMed Google Scholar
Braverman NE, Moser AB. Functions of plasmalogen lipids in health and disease. Biochem Biophys Acta. 2012;1822:1442–52.
Lohner K. Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem Phys Lipids. 1996;81:167–84.
Article CAS PubMed Google Scholar
Dorninger F, Brodde A, Braverman NE, Moser AB, Just WW, Forss-Petter S, et al. Homeostasis of phospholipids - The level of phosphatidylethanolamine tightly adapts to changes in ethanolamine plasmalogens. Biochem Biophys Acta. 2015;1851:117–28.
Stables MJ, Gilroy DW. Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res. 2011;50:35–51.
Article CAS PubMed Google Scholar
Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014;509:503–6.
Article CAS PubMed Google Scholar
Murphy RC. Free-radical-induced oxidation of arachidonoyl plasmalogen phospholipids: antioxidant mechanism and precursor pathway for bioactive eicosanoids. Chem Res Toxicol. 2001;14:463–72.
Article CAS PubMed Google Scholar
Ding L, Zhang LY, Shi HH, Wang CC, Jiang XM, Xue CH, et al. Eicosapentaenoic acid-enriched phosphoethanolamine plasmalogens alleviated atherosclerosis by remodeling gut microbiota to regulate bile acid metabolism in LDLR(-/-) mice. J Agric Food Chem. 2020;68:5339–48.
Article CAS PubMed Google Scholar
Rasmiena AA, Barlow CK, Stefanovic N, Huynh K, Tan R, Sharma A, et al. Plasmalogen modulation attenuates atherosclerosis in ApoE- and ApoE/GPx1-deficient mice. Atherosclerosis. 2015;243:598–608.
Article CAS PubMed Google Scholar
Sutter I, Velagapudi S, Othman A, Riwanto M, Manz J, Rohrer L, et al. Plasmalogens of high-density lipoproteins (HDL) are associated with coronary artery disease and anti-apoptotic activity of HDL. Atherosclerosis. 2015;241:539–46.
Article CAS PubMed Google Scholar
Pietilainen KH, Sysi-Aho M, Rissanen A, Seppanen-Laakso T, Yki-Jarvinen H, Kaprio J, et al. Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects–a monozygotic twin study. PLoS ONE. 2007;2: e218.
Article PubMed PubMed Central Google Scholar
Graessler J, Schwudke D, Schwarz PE, Herzog R, Shevchenko A, Bornstein SR. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS ONE. 2009;4: e6261.
Article PubMed PubMed Central Google Scholar
Dean JM, Lodhi IJ. Structural and functional roles of ether lipids. Protein Cell. 2018;9:196–206.
Article CAS PubMed Google Scholar
Lankinen M, Schwab U, Kolehmainen M, Paananen J, Nygren H, Seppanen-Laakso T, et al. A healthy nordic diet alters the plasma lipidomic profile in adults with features of metabolic syndrome in a multicenter randomized dietary intervention. J Nutr. 2015;146:662–72.
Felder TK, Ring-Dimitriou S, Auer S, Soyal SM, Kedenko L, Rinnerthaler M, et al. Specific circulating phospholipids, acylcarnitines, amino acids and biogenic amines are aerobic exercise markers. J Sci Med Sport. 2017;20:700–5.
Bidne KL, Uhlson C, Palmer C, Zemski-Berry K, Powell TL. Human placental lipid content and lipid metabolic enzyme abundance in obesity and across gestation. Clin Sci (Lond). 2022;136:1389–404.
Article CAS PubMed Google Scholar
Ferchaud-Roucher V, Kramer A, Silva E, Pantham P, Weintraub ST, Jansson T, et al. A potential role for lysophosphatidylcholine in the delivery of long chain polyunsaturated fatty acids to the fetal circulation. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864:394–402.
Comments (0)