MR1 antigen presentation to MAIT cells and other MR1-restricted T cells

Pishesha, N., Harmand, T. J. & Ploegh, H. L. A guide to antigen processing and presentation. Nat. Rev. Immunol. 22, 751–764 (2022).

Article  CAS  PubMed  Google Scholar 

Li, D. & Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 6, 291 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barral, D. C. & Brenner, M. B. CD1 antigen presentation: how it works. Nat. Rev. Immunol. 7, 929–941 (2007).

Article  CAS  PubMed  Google Scholar 

Rossjohn, J. et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33, 169–200 (2015).

Article  CAS  PubMed  Google Scholar 

Le Bourhis, L. et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11, 701–708 (2010).

Article  PubMed  Google Scholar 

Gold, M. C. et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol. 8, e1000407 (2010).

Article  PubMed  PubMed Central  Google Scholar 

McWilliam, H. E. et al. The intracellular pathway for the presentation of vitamin B-related antigens by the antigen-presenting molecule MR1. Nat. Immunol. 17, 531–537 (2016). This study outlines the trafficking pathway followed by MR1 from its synthesis in the ER to its degradation in endosomes and the role of VitBAg in regulation of MR1 expression.

Article  CAS  PubMed  Google Scholar 

Jeffery, H. C. et al. Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1. J. Hepatol. 64, 1118–1127 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012). This study reveals that MR1 binds and presents VitBAgs to MAIT cells.

Article  CAS  PubMed  Google Scholar 

Corbett, A. J. et al. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509, 361–365 (2014). This study identifies the most potent MR1 antigens, the 5-A-RU-derived pyrimidines such as 5-OP-RU.

Article  CAS  PubMed  Google Scholar 

García-Angulo, V. A. Overlapping riboflavin supply pathways in bacteria. Crit. Rev. Microbiol. 43, 196–209 (2017).

Article  PubMed  Google Scholar 

Tilloy, F. et al. An invariant T cell receptor α chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted α/β T cell subpopulation in mammals. J. Exp. Med. 189, 1907–1921 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003). This study outlines the discovery that MAIT cells are restricted by MR1.

Article  CAS  PubMed  Google Scholar 

Porcelli, S., Yockey, C. E., Brenner, M. B. & Balk, S. P. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4–8– α/β T cells demonstrates preferential use of several Vβ genes and an invariant TCR α chain. J. Exp. Med. 178, 1–16 (1993).

Article  CAS  PubMed  Google Scholar 

Kjer-Nielsen, L. et al. An overview on the identification of MAIT cell antigens. Immunol. Cell Biol. 96, 573–587 (2018).

Article  CAS  PubMed  Google Scholar 

Gherardin, N. A., McCluskey, J., Rossjohn, J. & Godfrey, D. I. The diverse family of MR1-restricted T cells. J. Immunol. 201, 2862–2871 (2018).

Article  CAS  PubMed  Google Scholar 

Godfrey, D. I., Koay, H.-F., McCluskey, J. & Gherardin, N. A. The biology and functional importance of MAIT cells. Nat. Immunol. 20, 1110–1128 (2019).

Article  CAS  PubMed  Google Scholar 

Lantz, O. & Legoux, F. MAIT cells: an historical and evolutionary perspective. Immunol. Cell Biol. 96, 564–572 (2018).

Article  CAS  PubMed  Google Scholar 

Koay, H.-F. et al. Diverse MR1-restricted T cells in mice and humans. Nat. Commun. 10, 2243 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Martin, E. et al. Stepwise development of MAIT cells in mouse and human. PLoS Biol. 7, e54 (2009).

Article  PubMed  Google Scholar 

Koay, H. F. et al. A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat. Immunol. 17, 1300–1311 (2016).

Article  CAS  PubMed  Google Scholar 

Gold, M. C. et al. Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress. Mucosal Immunol. 6, 35–44 (2013).

Article  CAS  PubMed  Google Scholar 

Legoux, F. et al. Microbial metabolites control the thymic development of mucosal-associated invariant T cells. Science 366, 494–499 (2019). This study shows that MR1 expressed in the thymus presents antigen from peripheral tissues for MAIT cell development.

Article  CAS  PubMed  Google Scholar 

Constantinides, M. G. et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366, eaax6624 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reantragoon, R. et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 210, 2305–2320 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gherardin, N. A. et al. Human blood MAIT cell subsets defined using MR1 tetramers. Immunol. Cell Biol. 96, 507–525 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meierovics, A., Yankelevich, W. J. & Cowley, S. C. MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. Proc. Natl Acad. Sci. USA 110, E3119–E3128 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le Bourhis, L. et al. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog. 9, e1003681 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Wang, H. et al. MAIT cells protect against pulmonary Legionella longbeachae infection. Nat. Commun. 9, 3350 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Leng, T. et al. TCR and inflammatory signals tune human MAIT cells to exert specific tissue repair and effector functions. Cell Rep. 28, 3077–3091.e5 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du Halgouet, A. et al. Role of MR1-driven signals and amphiregulin on the recruitment and repair function of MAIT cells during skin wound healing. Immunity 56, 78–92.e6 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Smith, A. D. et al. Microbiota of MR1 deficient mice confer resistance against Clostridium difficile infection. PLoS ONE 14, e0223025 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Varelias, A. et al. Recipient mucosal-associated invariant T cells control GVHD within the colon. J. Clin. Invest. 128, 1919–1936 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Crowther, M. D. & Sewell, A. K. The burgeoning role of MR1-restricted T-cells in infection, cancer and autoimmune disease. Curr. Opin. Immunol. 69, 10–17 (2021).

Article  CAS  PubMed  Google Scholar 

Shibata, K. et al. Symbiotic bacteria-dependent expansion of MR1-reactive T cells causes autoimmunity in the absence of Bcl11b. Nat. Commun. 13, 6948 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gherardin, N. A. et al. Diversity of T cells restricted by the MHC class I-related molecule MR1 facilitates differential antigen recognition. Immunity 44, 32–45 (2016).

Article  CAS  PubMed  Google Scholar 

Vacchini, A., Chancellor, A., Spagnuolo, J., Mori, L. & De Libero, G. MR1-restricted T cells are unprecedented cancer fighters. Front. Immunol. 11, 751 (2020).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif