Immunotherapy combination approaches: mechanisms, biomarkers and clinical observations

Olson, B., Li, Y., Lin, Y., Liu, E. T. & Patnaik, A. Mouse models for cancer immunotherapy research. Cancer Discov. 8, 1358–1365 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Diab, A. et al. Bempegaldesleukin plus nivolumab in first-line metastatic melanoma. J. Clin. Oncol. 39, 2914–2925 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Long, G. V. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 20, 1083–1097 (2019).

CAS  PubMed  Google Scholar 

Freidlin, B. & Korn, E. L. Two-by-two factorial cancer treatment trials: is sufficient attention being paid to possible interactions? J. Natl Cancer Inst. 10.1093/jnci/djx146 (2017).

Gascoigne, K. E. & Taylor, S. S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14, 111–122 (2008).

CAS  PubMed  Google Scholar 

Talukdar, S. et al. Defining immune infiltrate heterogeneity by immunophenotyping of tumor micro-environment at single cell level: a step towards more effective personalized immunotherapy in ovarian cancer. Gynecol. Oncol. 162, S52 (2021).

Google Scholar 

Qian, J. & Rankin, E. B. Hypoxia-induced phenotypes that mediate tumor heterogeneity. Adv. Exp. Med. Biol. 1136, 43–55 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Butterfield, L. H. The society for immunotherapy of cancer biomarkers task force recommendations review. Semin. Cancer Biol. 52, 12–15 (2018).

PubMed  Google Scholar 

CLIA. CLIA regulations and federal register documents. Center for Medicare and Medicaid Services https://www.cms.gov/Regulations-and-Guidance/Legislation/CLIA/CLIA_Regulations_and_Federal_Register_Documents (2023).

Dhainaut, M. et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell 185, 1223–1239.e20 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer 12, 323–334 (2012).

CAS  PubMed  Google Scholar 

Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Eggermont, A. M. et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N. Engl. J. Med. 375, 1845–1855 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Eggermont, A. M. M. et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N. Engl. J. Med. 378, 1789–1801 (2018).

CAS  PubMed  Google Scholar 

Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

PubMed  PubMed Central  Google Scholar 

Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

CAS  PubMed  Google Scholar 

Robert, C. L. et al. Long-term outcomes in patients (pts) with ipilimumab (ipi)-naïve advanced melanoma in the phase 3. J. Clin. Oncol. 15, 391–402 (2017).

Google Scholar 

Weber, J. et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med. 377, 1824–1835 (2017).

CAS  PubMed  Google Scholar 

Sharma, P. & Allison, J. P. Dissecting the mechanisms of immune checkpoint therapy. Nat. Rev. Immunol. 20, 75–76 (2020).

CAS  PubMed  Google Scholar 

Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

PubMed  Google Scholar 

Zhu, S. et al. Combination strategies to maximize the benefits of cancer immunotherapy. J. Hematol. Oncol. 14, 156 (2021).

PubMed  PubMed Central  Google Scholar 

Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

PubMed  PubMed Central  Google Scholar 

Liu, Y. T. & Sun, Z. J. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics 11, 5365–5386 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Spranger, S. et al. Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc. Natl Acad. Sci. USA 113, E7759–E7768 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Spranger, S. et al. Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci. Transl. Med. 5, 200ra116 (2013).

PubMed  PubMed Central  Google Scholar 

Mouw, K. W., Goldberg, M. S., Konstantinopoulos, P. A. & D’Andrea, A. D. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov. 7, 675–693 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Ready, N. et al. First-line nivolumab plus ipilimumab in advanced non-small-cell lung cancer (CheckMate 568): outcomes by programmed death ligand 1 and tumor mutational burden as biomarkers. J. Clin. Oncol. 37, 992–1000 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Butterfield, L. H. et al. Multiple antigen-engineered DC vaccines with or without IFNα to promote antitumor immunity in melanoma. J. Immunother. Cancer 7, 113 (2019).

PubMed  PubMed Central  Google Scholar 

Santos, P. M. et al. Impact of checkpoint blockade on cancer vaccine-activated CD8+ T cell responses. J. Exp. Med. 217, e20191369 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Verma, V. et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat. Immunol. 20, 1231–1243 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Dummer, R., Hoeller, C., Gruter, I. P. & Michielin, O. Combining talimogene laherparepvec with immunotherapies in melanoma and other solid tumors. Cancer Immunol. Immunother. 66, 683–695 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y. et al. Combining immunotherapy and radiotherapy for cancer treatment: current challenges and future directions. Front. Pharmacol. 9, 185 (2018).

PubMed  PubMed Central  Google Scholar 

Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015).

CAS  PubMed  Google Scholar 

Patel, S. A. & Minn, A. J. Combination cancer therapy with immune checkpoint blockade: mechanisms and strategies. Immunity 48, 417–433 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Gravett, A. M., Trautwein N, Stevanovic, S., Dalgleish, A. G. & Copier, J. Gemcitabine alters the proteasome composition and immunopeptidome of tumour cells. Oncoimmunology 7, e1438107 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Wan, S. et al. Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-β signaling in breast cancer cells. PLoS ONE 7, e32542 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Suzuki, E., Kapoor, V., Jassar, A. S., Kaiser, L. R. & Albelda, S. M. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11, 6713–6721 (2005).

CAS  PubMed  Google Scholar 

Vincent, J. et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70, 3052–3061 (2010).

CAS  PubMed  Google Scholar 

Zhao, J. et al. Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res. 70, 4850–4858 (2010).

CAS  PubMed  Google Scholar 

Dimeloe, S. et al. Human regulatory T cells lack the cyclophosphamide-extruding transporter ABCB1 and are more susceptible to cyclophosphamide-induced apoptosis. Eur. J. Immunol. 44, 3614–3620 (2014).

CAS  PubMed  Google Scholar 

Ge, Y. et al. Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome. Cancer Immunol. Immunother. 61, 353–362 (2012).

CAS  PubMed  Google Scholar 

Buhtoiarov, I. N. et al. Anti-tumour synergy of cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapy through repolarization of tumour-associated macrophages. Immunology 132, 226–239 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Antonia, S. J. et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N. Engl. J. Med. 377, 1919–1929 (2017).

Comments (0)

No login
gif