Implications of Climate Change and Anopheles stephensi Liston in Africa: Knowledge Gaps and Lessons from History

Wilkerson RC, Linton Y-M, Strickman D. Mosquitoes of the world (Vols 1 & 2). Johns Hopkins University Press; 2021.

Book  Google Scholar 

• Faulde MK, Rueda LM, Khaireh BA. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa. Acta Trop. 2014;139:39–43 This publication reports the initial discovery of Anopheles stephensi collected from Djibouti.

Article  PubMed  Google Scholar 

• Gad AM. Anopheles stephensi Liston in Egypt, UAR. Mosq News. 1967;27(2):171. This publication reports the initial discovery of Anopheles stephensi collected from Egypt in 1966; this appears to be the first report of this species in Africa.

Google Scholar 

• Ahmed A, Khogali R, Elnour MA, Nakao R, Salim B. Emergence of the invasive malaria vector Anopheles stephensi in Khartoum State, Central Sudan. Parasit Vectors. 2021;14(1):1–5. This publication reports the initial discovery of Anopheles stephensi collected from the Sudan.

Google Scholar 

• Ali S, Samake JN, Spear J, Carter TE. Morphological identification and genetic characterization of Anopheles stephensi in Somaliland. Parasit Vectors. 2022;15(1):247. (This publication reports the initial discovery of Anopheles stephensi collected from Somalia.)

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Nigerian Institute of Medical Research. 2022. NIMR discovers new malaria vector in northern Nigeria. https://nimr.gov.ng/nimr/wp-content/uploads/2022/07/NIMR-discovers-new-malaria-vector-in-northern-Nigeria-Healthwise_-healthwise.punchng.com_.pdf. Date: July 26, 2022. Accessed July 2023. This publication reports the initial discovery of Anopheles stephensi collected from Nigeria; this is not a peer-reviewed study.

• Ochomo EO, Milanoi S, Abong’o B, Onyango B, Muchoki M, Omoke D, Olanga E, Njoroge L, Juma E, Otieno JD, Matoke D. Molecular surveillance leads to the first detection of Anopheles stephensi in Kenya., 31 May 2023, PREPRINT (Version 2) available at Research Square: https://doi.org/10.21203/rs.3.rs-2498485/v2. Accessed August 2023. This publication reports the initial discovery of Anopheles stephensi collected from Kenya.

Huestis DL, Dao A, Diallo M, Sanogo ZL, Samake D, Yaro AS, Ousman Y, Linton Y-M, Krishna A, Veru L, Krajacich BJ. Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature. 2019;574(7778):404–8.

Article  CAS  PubMed  Google Scholar 

Lehmann T, Bamou R, Chapman JW, Reynolds DR, Armbruster PA, Dao A, Yaro AS, Burkot TR, Linton Y-M. Urban malaria may be spreading via the wind—here’s why that’s important. Proc Natl Acad Sci. 2023;120(18):e2301666120

Ahn J, Sinka M, Irish S, Zohdy S. Modeling marine cargo traffic to identify countries in Africa with greatest risk of invasion by Anopheles stephensi. Sci Rep. 2023;13(1):876.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blanford JI, Blanford S, Crane RG, Mann ME, Paaijmans KP, Schreiber KV, Thomas MB. Implications of temperature variation for malaria parasite development across Africa. Sci Rep. 2013;3(1):1300.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• World Health Organization. Partners convening: a regional response to the invasion of Anopheles stephensi in Africa: Meeting Report, 8–10 March 2023. https://apps.who.int/iris/handle/10665/369368This publication reports the initial discovery of Anopheles stephensi collected from Eritrea Ghana and Zanzibar; this is not a peer-reviewed study.

de Santi VP, Khaireh BA, Chiniard T, Pradines B, Taudon N, Larréché S, Mohamed AB, de Laval F, Berger F, Gala F, Mokrane M. Role of Anopheles stephensi mosquitoes in malaria outbreak, Djibouti, 2019. Emerg Infect Dis. 2021;27(6):1697.

Article  PubMed  PubMed Central  Google Scholar 

Hamlet A, Dengela D, Tongren JE, Tadesse FG, Bousema T, Sinka M, Seyoum A, Irish SR, Armistead JS, Churcher T. The potential impact of Anopheles stephensi establishment on the transmission of Plasmodium falciparum in Ethiopia and prospective control measures. BMC Med. 2022;20(1):135.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, Hay SI. Global epidemiology of Plasmodium vivax. Am J Trop Med Hyg. 2016;95(6 Suppl):15.

Article  PubMed  PubMed Central  Google Scholar 

Mutsaers M, Engdahl CS, Wilkman L, Ahlm C, Evander M, Lwande OW. Vector competence of Anopheles stephensi for O’nyong-nyong virus: a risk for global virus spread. Parasit Vectors. 2023;16(1):1–8.

Article  Google Scholar 

Angel S, Parent J, Civco DL, Blei A, Potere D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog Plan. 2011;75(2):53–107.

Article  Google Scholar 

• Sinka ME, Pironon S, Massey NC, Longbottom J, Hemingway J, Moyes CL, Willis KJ. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc Natl Acad Sci. 2020;117(40):24900–8. This publication presents the most recent predicted habitat suitability for Anopheles stephensi in Africa.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soper FL, Wilson DB. Anopheles gambiae in Brazil, 1930 to 1940. Rockefeller Foundation; 1943.

Google Scholar 

Henderson JV, Storeygard A, Deichmann U. Has climate change driven urbanization in Africa? J Dev Econ. 2017;1(124):60–82. https://doi.org/10.1016/j.jdeveco.2016.09.001

Henderson JV, Storeygard A, Deichmann U. Has climate change driven urbanization in Africa? J Dev Econ. 2017;1(124):60–82.

Article  Google Scholar 

Marchiori L, Maystadt JF, Schumacher I. The impact of weather anomalies on migration in subSaharan Africa. J Environ Econ Manag. 2012;63(3):355–74. https://doi.org/10.1016/j.jeem.2012.02.001

Marchiori L, Maystadt JF, Schumacher I. The impact of weather anomalies on migration in sub-Saharan Africa. J Environ Econ Manag. 2012;63(3):355–74.

Article  Google Scholar 

• Mafwele BJ, Lee JW. Relationships between transmission of malaria in Africa and climate factors. Sci Rep. 2022;12(1):14392. This publication details how temperature will impact malaria transmission and climate change in Africa.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weiss DJ, Bhatt S, Mappin B, Van Boeckel TP, Smith DL, Hay SI, Gething PW. Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000–2012: a high-resolution spatiotemporal prediction. Malar J. 2014;13(1):1–11.

Article  Google Scholar 

Diouf I, Adeola AM, Abiodun GJ, Lennard C, Shirinde JM, Yaka P, Ndione JA, Gbobaniyi EO. Impact of future climate change on malaria in West Africa. Theoret Appl Climatol. 2022;1:1–3.

Google Scholar 

Garamszegi LZ. Climate change increases the risk of malaria in birds. Glob Change Biol. 2011;17(5):1751–9.

Article  Google Scholar 

Caminade C, McIntyre KM, Jones AE. Impact of recent and future climate change on vector-borne diseases. Ann N Y Acad Sci. 2019;1436(1):157–73.

Article  PubMed  Google Scholar 

Miazgowicz KL, Mordecai EA, Ryan SJ, Hall RJ, Owen J, Adanlawo T, Balaji K, Murdock CC. Mosquito species and age influence thermal performance of traits relevant to malaria transmission. biorxiv. 2019;14:769604.

Google Scholar 

Villena OC, Ryan SJ, Murdock CC, Johnson LR. Temperature impacts the environmental suitability for malaria transmission by Anopheles gambiae and Anopheles stephensi. Ecology. 2022;103(8):e3685.

Article  PubMed  Google Scholar 

• Carter TE, Yared S, Getachew D, Spear J, Choi SH, Samake JN, Mumba P, Dengela D, Yohannes G, Chibsa S, Murphy M. Genetic diversity of Anopheles stephensi in Ethiopia provides insight into patterns of spread. Parasit Vectors. 2021;14(1):602. This publication reports the initial discovery of Anopheles stephensi collected from Ethiopia.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rao BA, Sweet WC, Subba Rao AM. Ova measurements of A. stephensi type and A. stephensi var. mysorensis. J Malaria Inst India. 1938;1:261–6.

Google Scholar 

Subbarao SK, Vasantha K, Adak T, Sharma VP, Curtis CF. Egg-float ridge number in Anopheles stephensi: ecological variation and genetic analysis. Med Vet Entomol. 1987;1(3):265–71.

Article  CAS  PubMed  Google Scholar 

Vatandoost H, Oshaghi MA, Abaie MR, Shahi M, Yaaghoobi F, Baghaii M, Hanafi-Bojd AA, Zamani G, Townson H. Bionomics of Anopheles stephensi Liston in the malarious area of Hormozgan province, southern Iran, 2002. Acta Trop. 2006;97(2):196–203.

Article  CAS  PubMed  Google Scholar 

Chakraborty S, Ray S, Tandon N. Seasonal prevalence of Anopheles stephensi larvae and existence of two forms of the species in an urban garden in Calcutta City. Indian J Malariol. 1998;35(1):8–14.

CAS  PubMed  Google Scholar 

Manouchehri AV, Javadian E, Eshighy N, Motabar M. Ecology of Anopheles stephensi Liston in southern Iran. Trop Geogr Med. 1976;28(3):228–32.

CAS  PubMed  Google Scholar 

Thomas S, Ravishankaran S, Justin NA, Asokan A, Mathai MT, Valecha N, Montgomery J, Thomas MB, Eapen A. Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria. Malar J. 2017;16(1):1–7.

Article  Google Scholar 

Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, Gething PW, Elyazar IR, Kabaria CW, Harbach RE, Hay SI. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2011;4(1):1–46.

Google Scholar 

Balkew M, Mumba P, Yohannes G, Abiy E, Getachew D, Yared S, Worku A, Gebresilassie A, Tadesse FG, Gadisa E, Esayas E. An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Ethiopia, 2018–2020. Malar J. 2021;20(1):1–3.

Google Scholar 

Foley DH, Wilkerson RC, Birney I, Harrison S, Christensen J, Rueda LM. MosquitoMap and the Mal-area calculator: new web tools to relate mosquito species distribution with vector borne disease. Int J Health Geogr. 2010;9(1):1–8.

Article  Google Scholar 

Foley DH, Maloney FA Jr, Harrison FJ, Wilkerson RC, Rueda LM. Online spatial database of US Army public health command region-west mosquito surveillance records: 1947–2009. US Army Med Dep J. 2011;1:29–36.

Google Scholar 

Foley DH, Wilkerson RC, Rueda LM. Importance of the “what”,“when”, and “where” of mosquito collection events. J Med Entomol. 2009;46(4):717–22.

Article  PubMed  Google Scholar 

Molyneux DH. Common themes in changing vector-borne disease scenarios. Trans R Soc Trop Med Hyg. 2003;97(2):129–32.

Article  PubMed  Google Scholar 

Crombie MK, Gillies RR, Arvidson RE, Brookmeyer P, Weil GJ, Sultan M, Harb M. An application of remotely derived climatological fields for risk assessment of vector-borne diseases: a spatial study of filariasis prevalence in the Nile Delta, Egypt. Photogramm Eng Remote Sens. 1999;65(ANL/ER/JA-37529). https://www.osti.gov/biblio/943107

El-Zeiny A, El-Hefni A, Sowilem M. Geospatial techniques for environmental modeling of mosquito breeding habitats at Suez Canal Zone, Egypt. Egypt J Remote Sens Space Sci. 2017;20(2):283–93.

Google Scholar 

Attaway DF, Jacobsen KH, Falconer A, Manca G, Waters NM. Risk analysis for dengue suitability in Africa using the ArcGIS predictive analysis tools (PA tools). Acta Trop. 2016;1(158):248–57.

Article  Google Scholar 

Campbell LP, Luther C, Moo-Llanes D, Ramsey JM, Danis-Lozano R, Peterson AT. Climate change influences on global distributions of dengue and chikungunya virus vectors. Phil Trans R Soc B: Biol Sci. 2015;370(1665):20140135.

Article 

留言 (0)

沒有登入
gif